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Relevance of multifractal textures in static images
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Abstract

In the latest years, multifractal analysis has been applied to image analysis. The multifractal framework
takes advantage of multiscaling properties of images to decompose them as a collection of different fractal
components, each one associated to a singularity exponent (an exponent characterizing the way in which
that part of the image evolves under changes in scale). One of those components, characterized by the
least possible exponent, seems to be the most informative about the whole image. Very recently it has
been proposed an algorithm to reconstruct the image from this component, just using physical information
conveyed by it. In this paper, we will show that the same algorithm can be used to assess the relevance of
the other fractal parts of the image.

Keywords: Singularity analysis, wavelets, reconstruction.

1 Introduction

Edge detection and texture classification are two main tasks in image processing, recognition and classification
[1]. Extraction of edges provides information about the objects composing the scene, sometimes allowing
segmentation; edges are thus the main source of information in the image and serve well also for classifying
purposes. Texture information is more subtle, concerning the patterns and regularities inside the objects, light
rendering and similar features. They also provide an important amount of information and they are specially
useful in classification and segmentation tasks.

One of the reasons to introduce the multifractal formalism in image processing was to provide a unified,
reasonable way to deal with edges and textures at the same time [2]. The multifractal classification splits the
image in edge-like and texture-like sets, which are arranged according to their properties under changes in scale
(that is, under zooms). This approach is specially well adapted to certain types of images (for instance, those of
turbulent or chaotic nature, as multifractality arose to explain the statistical properties of turbulent flows), but a
great variety of real world scenes seem to be well described in this framework [3].

There is another reason to use the multifractal formalism: due to some statistical properties, one of the
fractal components issued from the multifractal classification allows reconstructing the whole image. The im-
plementation of the reconstruction algorithm has been recently proposed [4]. That reconstruction algorithm was
designed to work over the most edge-like of the fractal components (reconstructing from edge-like structures
has been explored in several contexts from scale-space theory [5] to wavelet analysis [6]). The key point is
that the same algorithm can potentially be applied to the other components of the multifractal decomposition.
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The goal of this paper is to use this algorithm to evaluate the relative importance of each one of those fractal
components.

The paper is structured as follows: in Section2, the theoretical fundations of the multifractal framework are
briefly explained and the main implications discussed. Section3 shows how to apply the formalism in practice,
in particular to produce the multifractal decomposition. In Section4 the reconstruction algorithm is presented
and its properties are discussed; next, in Section5 we will make use of it to obtain an assessment about the
relevance of each fractal component. Finally, in Section6 the conclusions of our work are presented.

For the purposes of illustration, we will make use of Lena’s picture (Figure1) and we will apply our tech-
niques on it. The image presents remarkable deviations from the multifractal scheme (for instance, it has fuzzy
edges in out of focus objects and numerous coding and processing artifacts), but however it is rather well
described as a multifractal object.

2 Multifractal framework

The multifractal formalism was developed first in the study of turbulent flows [7], as a way to explain the
properties under changes of scale of very turbulent systems. It has been applied to the study of different types
of images by several authors [8, 2], as images have some properties which resemble to those of turbulent flows.
We briefly sketch here the basic concepts in the approach we are going to use; for further details the reader is
referred to [2].

We will denote any image byc(~x) where~x denotes the vector coordinates of the referred pixel and it is
normalized so that its average over the image vanishes,〈c(~x)〉~x∈image = 0. Acording to [2] we define a

positive measureµ as follows: for any subsetA of the image, its measureµ(A) is given by:

µ(A) =
∫
A
d~y |∇c|(~y) (1)

that is, the measure assigns a weight to the setA equal to the sum of the absolute variations of the image over it.
Texturized areas will contribute with larger weights to the measureµ than flatly illuminated, smooth surfaces.
In fact we will not be interested in the value of the measure over sets of fixed size, but in its evolution under
changes in scale (resolution) around each point. Given a collection of ballsBr(~x) of radii r and center~x, we
will say that the measureµ is multifractal if:

µ(Br(~x)) ≈ α(~x) r2+h(~x) (2)

for r’s small enough. The exponenth(~x) is called the local singularity exponent, and characterizes the way in
which image behaves under changes in the size parameterr at the particular point~x∗ . As we consider small
r’s, the largest values of the measuresµ(Br(~x)) correspond to the smallest values of the exponentsh(~x). For
that reason, we will be specially interested in negative singularity exponents, which are found at pixels which
contribute strongly to the measure by themselves (take into account that we consider very small radii). One of
the advantages of this definition is that what determines the value ofh(~x) is not the absolute variation ofc(~x)
at the point~x, but its relative importance compared to the variations at the surrounding points: multiplyingc(~x)
by a constant modifiesα(~x) in eq. (2), but leftsh(~x) unchanged. The classification of points accordingly is
local, in opposition with global thresholding techniques.

Natural images, that is, real word scenes of “natural” objects are of multifractal character [9, 2], what has
been tested for a large variety of scenes [3] and even with color images [10]. This property is far from trivial, and
accounts for a special arrangement of edges and textures in images. In the following, we will only discuss on
this type of images, although the same methods could be applied to other as well. Assessment of multifractality
∗ The prefactor (2 in our case) in the definition of the singularity exponent, eq. (2), is conventionally set to the dimension of the

embedding space. This normalization allows to compare results from subspaces of different dimensions: the value ofh(~x) becomes
independent of the dimension of the space.
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on real, digitized images can not be easily performed by a direct application of eq. (2) because of several
technical reasons: some interpolation mechanism should be devised to take into account non-integer radii,
for instance (there may be also undesiderable long-range effects which should be filtered; see [2] for a full
discussion). In order to obtain a good evaluation of the singularity exponents, singularity analysis via wavelet
analysis [11] should be performed. Wavelet analysis is a quite straightforward generalization of the scaling
measurements in eq. (2): insted of applying the measure over finite size balls of radiir, a convolution of the
measureµ with a scaled version of a waveletΨ is computed. More precisely, the wavelet projectionTΨµ(~x, r)
of the measureµ at the point~x and the scaler is defined as:

TΨµ(~x, r) =
∫
d~y |∇c|(~y)

1
r2

Ψ(
~x− ~y
r

) (3)

The measureµ is multifractal (in the sense of eq. (2)) if and only if:

TΨµ(~x, r) ≈ αΨ(~x) rh(~x) (4)

for small scale parametersr. Notice thatαΨ is in general dependent of the waveletΨ and the measureµ, but
the scaling exponenth(~x) has exactly the same value than in eq. (2) and does only depend onµ, that is, on the
imagec(~x)† .

From the theoretical point of view, the choice of the particular waveletΨ is irrelevant for the determination
of the exponentsh(~x); it can be even chosen as a positive function‡ . However, in practical grounds there are
wavelets which resolve better the finer structures than other. In Figure2 we show the representations of the
multifractal classifications for four different wavelets. We will discuss further about the choice of the wavelet
in Section3.

Multifractal classification of points is the first stage for multifractal decomposition of images (what justifies
the name “multifractal” for the method). Points in the image can be arranged in fractal components, each
one associated to a value for the singularity exponent. Namely, the fractal componentFh0 associated to the
exponenth0 is given by:

Fh0 = { ~x ∈ image| h(~x) = h0 } (5)

As the measure verifies to be multifractal, every point in the image can be associated a particular singularity
exponent, so the image can be decomposed as the union of all its fractal components. They are indeed fractal
sets [2], their dimensions being connected with statistical properties of images [12]. The most interesting of
those fractal components is the Most Singular Manifold (MSM) [9], which is the fractal component associated
to the least possible exponent. This set is usually related to the edges present in the image [2]. The least possible
exponent is usually denotedh∞ and its associated manifoldFh∞ is generally denotedF∞ in short.

3 Multifractal decomposition

A correct determination of the MSMF∞ implies a good multifractal decomposition, according to what was
explained in Section2. The main point concerns the choice of the analyzing waveletΨ. Once the wavelet
is fixed, the singularity exponents are computed at every point in the image. The exponents are obtained by
means of a log-log regression applied to eq. (4) at every point, in a range of scales typically going from 1 to 8
pixels non uniformly sampled (see [2]). Once every point is assigned a singularity exponent, the value ofh∞
is estimated. A usual way to do this consists of taking the average between the values associated to the1%
and the5% most singular points [2]. The dispersion around this value is conventionally fixed depending on
the application. In Figure2 we present the functionsh(~x) for four different wavelets. Let us define them. Let
† Let us remark that the normalization in the waveletΨ elliminates the prefactor2 in the exponent
‡ Positive functions are not proper (admissible) wavelets (an admissible wavelet has zero mean [11]). Recall that the admissibility

condition is necessary for signal representation (reconstruction), but not for signal analysis.
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~x = (x1, x2) be the position vector,r =
√
x2

1 + x2
2 its modulus. We will make use of the following wavelets

Ψi(~x), i = 1, 2, 3, 4:

1. Lorentzian wavelet:

Ψ1(~x) =
1

1 + r2

2. First radial derivative of Lorentzian wavelet:

Ψ2(~x) =
dΨ1

dr
(~x) =

−2r
(1 + r2)2

3. Gaussian wavelet:

Ψ3(~x) = e−
1
2
r2

4. Second radial derivative of gaussian wavelet:

Ψ4(~x) =
d2Ψ1

dr2
= (r2 − 1)e−

1
2
r2

Each one of those wavelets fits the best for a particular application. Lorentzian wavelet (Ψ1) is a possitive
wavelet of slow decay at infinity. It is very good to resolve sharp (negative) singularities in the measureµ
(good spatial localization), but it has the backdraw of being unable to distinguish all the singularities beyond
h = 0 (it returns the valueh = 0 for all of them); besides, it cannot be used to analize the signalc(~x) directly
(a certain number of vanishing moments would be required [13, 2]). The gaussian wavelet (Ψ3) cannot be
either used over the signal itself, as it is positive also, but having fast decaying tails it is able to resolve the
whole range of singularities (typically between−1 and2, see [2]); the backdraw is a worse spatial localization,
specially for the MSM. The second derivative of the gaussian (Ψ4) is, from the theoretical point of view, the
best possible choice for analyzing signals: it resolves the whole range of values ofh(~x) and it can be even
used over the signal itself, without necessity of constructing a measure. However, in practice it has very poor
spatial localization, associated to an inner minimum scale of several pixels, necessary to separate positive from
negative extrema in wavelet projections. The best choice in practice is then the derivative of Lorentzian wavelet
(Ψ2), which arrives to a compromise in range of detected singularities, localization and applicability over the
full signal. It is not well adapted for any one of those tasks (it truncates the range of singularities aboveh = 1,
it blurs localization, it has not enough number of vanishig moments), but it is able to provide meaningful results
in every context.

In Figure 3 several different fractal manifolds for our image are represented, every column showing the
sets associated to each one of the wavelets discussed above. The first step is to computeh∞ as described at
the beginning of this Section, obtaining the different values for the different wavelets:h∞ = −0.47 for Ψ1 ,
h∞ = −0.32 for Ψ2 , h∞ = −0.43 for Ψ3 andh∞ = −0.68 for Ψ4 . As a general remark, wavelets with higher
orders of derivative are more imprecise in the determination of this value, while positive wavelets throw more
similar results.

Once the value ofh∞ has been obtained, we isolate the MSM, defining it as the set of points~x for which
h∞−∆h ≤ h(~x) < h∞+∆h with a conventionally fixed value of the dispersion∆h; in the following we take
∆h = 0.15. We represent also the other fractal manifolds according to the given dispersion, so thenth MSM
will be the set of points~x for whichh∞ + (2n − 3)∆h ≤ h(~x) < h∞ + (2n − 1)∆h (the MSM itself is the
first MSM). Finally, we define the manifold of excluded points or excluded manifod as the set of points~x such
thath(~x) < h∞ −∆h, that is, which are more singular than expected. Those events are generally associated
to the borders of the image and some particular events, which happen to have singularities close to−1, typical
to isolated edges [2]. In Figure3, we show all those manifolds.
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4 Reconstructing from edges

Recently, an algorithm to reconstruct the whole image from the most singular of its fractal components has
been proposed [4]. We will not go into details about the reconstruction algorithm; we will just present the final
formula and discuss it. The reader is referred to the original paper.

The reconstruction formula intends to reproduce the whole image from the value of the gradient field over
the MSM. First, let us define the essential gradient over a general setF . We define it as a vector function which
is only different from zero over the setF , namely:

~vF (~x) ≡ ∇c(~x) δF (~x) (6)

where the symbolδF stands for a delta function on the setF . The reconstruction algorithm is given by the
following expression:

c(~x) = ~g ⊗ ~vF∞ (~x) (7)

where⊗ stands for the convolution and the reconstructing kernel~g is given in the Fourier space by the following
expression:

~̂g(~f) = i
~f

f2
(8)

In the above expression, the symbolˆ stands for the Fourier transform,~f is the spatial frequency (the variable
in the Fourier domain) andi ≡

√
−1. The reconstruction formula states that it is possible to retrieve the image

from the essential gradient associated to the MSMF∞. Note, however, that the formula could be applied to any
setF ; we will denote bycF the image retrieved from the essential gradient associated to the setF ; namely:

cF (~x) = ~g ⊗ ~vF (~x) (9)

We will call eq. (9) the generalized reconstruction formula. In this language, the reconstruction formula states
thatcF∞ = c. The generalized reconstruction formula has some nice properties.

• It is linear in the reconstructing data:If the setF is the disjoint union of two setsF1 andF2 (i.e.,
F = F1 ∪ F2, with F1 ∩ F2 = ∅), thencF = cF1

+ cF2
.

This comes from the fact that~vF1∪F2
= ~vF1

+ ~vF2
if the sets are disjoint, and the associativity of the

convolution product.

• It always exists a set from which reconstruction is perfect:If F = <2, that is, the whole image,~vF = ∇c,
but as∇̂c(~f) = −i ~f ĉ(~f) and taking into account the definition of~g, trivially cF = c.

Taking into account both remarks, we conclude that ifF c is the complementary set of a setF , cF + c
Fc

= c,
which can also be expressed asc− cF = c

Fc
, that is, the reconstruction from the complementary ofF is equiv-

alent to the error image (the difference between the reconstruction and the actual image). The reconstruction
formula states that there exists a rather sparse setF∞ from which the reconstruction is perfect (equivalently,
the reconstruction error is zero). In practice, however, a good determination ofF∞ is sometimes difficult. In
such cases, the generalized reconstruction formula allows measuring how relevant the points not included in
that set are, for instance just measuring the PSNR’s for the reconstructed images. Due to linearity, the same
measure can be interpreted as the decrease in the error associated to the inclusion of those points in the estimate
of F∞ . We apply those ideas in the next section to interpret the importance of the different fractal components
extracted according different wavelet projections.
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5 Relevance of the fractal manifolds

We will make an assess about the relative importance of the fractal manifolds by means of the generalized
reconstruction formula. In Figure4 we show the different images reconstructed from the manifolds presented
in Figure3 using eq. (9); in Table1 the associated PSNRs can be found. We see that the MSM provides always
the greatest amount of information about the image, which is reflected both by visual inspection and the values
of the PSNR. However, the second manifold contains a significant amount of information, which reflects in
the recogniscible structures which are reconstructed from it and still significant values of PSNR (in the case of
the Lorentzian wavelet (first column), the second MSM contains all the other points, because it is not able to
distinguish singularities aboveh = 0 and they are truncated to that value). The other manifolds (when they
can be distinguished, that is, when considering wavelets other that Lorentzian) contain significantly very few
information.

The excluded manifold deserves a particular comment. It contains very sharp edges and it accounts for global
illumination conditions (for instance, more light over the hat or the shoulder, the global focus on the right of
the image,...). It should be included in any reasonable reconstructing set, even if their statistical properties (due
to boundary conditions or strong fluctuations) may constitute a deviation from the multifractal model (as they
more singular than what is predicted by the model).

The relative importance of each fractal part can be better understood looking at Figure5, in which images
in Figure4 are progressively summed up from top the column to the bottom; due to linearity of eq. (9), the
resulting images are equivalent to the result of reconstructing from the succesive union of manifolds in Figure3.
It is obvious from visual inspection that after the second manifold very few information is incorporated in the
successive additions, a fact also evidenced by the associated PSNRs, Table2.

6 Conclusions

In this paper we have recalled the multifractal formalism, which stands to be a method for classifying points
in images according to their singular character. We have seen that this rather mathematical characterization
(the singularity exponent) has an interpretation in terms of relative informative relevance: the most singular
points are the most informative about the scene. This characterization of the informational content is made by
means of the reconstruction algorithm [4], which was proposed as a way to reconstruct images from edges,
derived from simple, general assumptions. The properties of the reconstruction algorithm allow to isolate the
contribution of every point in the final reconstructed image. We have made use of it to assess the qualities as
reconstructing sets of the different fractal components spawned in the multifractal scheme.

The method proposed here could be used to determine which properties (edges, textures) are important to
keep in order to have a good visual performance in compressed images and which ones could be removed
without affecting significantly the quality. It is a rather natural technique, as it is based on physical properties
of images. It is important to notice that the reconstruction algorithm can be considered an edge-detection based
coding scheme, much in the way of the modern techniques of ridgelets and curvelets [14], which have been
shown to be very efficient for image coding.

In order to implement compressing techniques using the reconstruction algorithm, high performance re-
constructing sets should be extracted from images. The technique of singularity classification is a good first
approach to obtain that set, but the multifractal model is just approximate for general real word images (it was
derived for a subset of so-called natural scenes) and so the MSM is just an approximation to the best recon-
structing set. Besides, singularity detection is a complicated technique, which requires fine tuning in the choice
of the analyzing wavelet. In spite of all those backdraws, it is possible to obtain good performance just using
singularity analysis (see Figure6). From a more general perspective, however, other methods for the extraction
of the reconstructing set need to be devised.
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7 Lena’s picture

Figure 1: Lena’s image
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8 Singularity exponents with four wavelets

Figure 2: Multifractal decompositions on Lena’s image for Lorentzian wavelet and its derivative (top) and
Gaussian wavelet and its second derivative (bottom) (see Section5). The smaller is the singularity exponent,
the brighter is the point.
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9 Multifractal decompositions

Figure 3: Multifractal decompositions on Lena’s image. From left to right: Lorentzian wavelet, its derivative,
Gaussian wavelet and its second derivative. From top to bottom: excluded manifolds, MSMs, second MSMs,
third MSMs, fourth MSMs and fifth MSMs
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10 Reconstruction from fractal components

Figure 4: Reconstruction images from the sets represented in Figure3
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Ψ1 Ψ2 Ψ3 Ψ4

14.54 14.40 14.26 14.27

17.22 15.48 16.19 14.45

14.76 14.31 15.25 14.73

13.32 13.30 13.47 15.17

13.32 13.30 13.24 14.09

13.32 13.32 13.29 13.46

Table 1: PSNRs (in dB) for the reconstructed images represented in Figure4
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11 Accumulated reconstructions

Figure 5: Accumulated reconstructed images, from the reconstructed images in Figure4
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Ψ1 Ψ2 Ψ3 Ψ4

14.54 14.40 14.26 14.27

17.66 15.89 15.49 14.86

70.42 26.66 22.46 15.86

70.80 52.04 31.52 20.73

70.80 70.80 43.01 27.27

70.80 70.80 48.85 35.52

Table 2: PSNRs (in dB) for the accumulated reconstructed images represented in Figure5
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12 A good choice for the reconstructing set

Figure 6: Left: MSM with Lorentzian wavelet,h∞ = −0.5 ± 0.2. Right: reconstructed image (PSNR=24.52
dB)
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