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Abstract

Anomaly detection in video is essential for applications like surveillance, healthcare, and industrial
monitoring. Through the reconstruction of normal patterns and the computation of reconstruction error in
relation to ground truth, convolutional autoencoders detect anomalies. Frames with errors above a threshold
are flagged as abnormal. Existing approaches rely on fixed thresholds, which may not adapt well to vary-
ing lighting conditions, leading to false positives or missed anomalies. A novel autoencoder (SESAA) is
proposed in this work that combines self-attention with squeeze-and-excitation (SE) blocks and improves
video anomaly detection by using a thresholding technique for optimal threshold identification. Our adaptive
thresholding technique leverages reconstruction cost, peak signal-to-noise ratio (PSNR) and frame bright-
ness for optimal threshold identification, enhancing adaptability to different scenarios. Comparing with
dynamic threshold methods, we assess our model using ROC and AUC metrics. Experiments on three
benchmark datasets validate the efficacy of our method in precise anomaly detection through optimal thresh-
olding.
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1 Introduction

In computer vision, video anomaly detection is a method that automatically identifies odd or unexpected events
in video footage. This has significant applications in a number of contexts, including traffic monitoring, smart
homes, health care, and real-time video surveillance. Improving the monitoring system’s dependability and
security requires prompt anomaly detection. Because there are an infinite number of normal examples and a
limited number of abnormal ones, anomaly identification is a difficult problem. Most of the existing methods
identify anomalous occurrences as those that deviate from the patterns that are learnt from normal training data
events [1, 2].

The two main categories of video anomaly detection techniques are handcrafted feature-based techniques
[3, 4, 5, 6] and deep learning-based techniques [7, 8, 9, 10, 11, 12, 13, 14]. The first category includes several
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manually created features that reflect normal patterns, such as object-wise trajectories, the histogram of mag-
nitude and momentum (HOMM) [4], the histogram of optical flow (HOF) [6], and the histogram of orientated
gradients (HOG) [5]. Applying these strategies to diverse settings is challenging since they require prior under-
standing of the scene. Deep learning techniques have been effectively applied to detect anomalous activity in
videos because of the power of deep neural networks. Significant progress has been made in anomaly detection
using prediction-based methods [15, 16] reconstruction-based deep learning techniques [2, 13, 11, 12] and their
combination [17]. The basis for reconstruction techniques [8, 9, 10] is the idea that while anomalous events
will have high reconstruction errors while normal events can be reliably reproduced. The prediction-based ap-
proaches [15, 16, 18] on the other hand, are based on the notion that abnormal occurrences cannot be accurately
predicted, whereas normal events can be predicted with an acceptable level of efficiency.

In most of the existing works, the reconstruction error level is predefined in order to identify anomalies in
video frames. The frames are deemed abnormal if the reconstruction errors are more than this threshold value;
otherwise, they are regarded as normal [8]. However, these fixed threshold detection techniques will produce
false positives because they cannot be adjusted for all conditions. Jia et al. [19] proposed a thresholding
algorithm that adjusts the threshold to adapt illumination changes and evaluated their method using synthetic
datasets. But this dynamic thresholding is highly sensitive to lighting conditions.

Attention in machine learning refers to a method that mimics the cognitive attention of humans by emphasiz-
ing certain portions of the input, such as an object, while ignoring other parts. When attention was focused on
the foreground, where dynamic items were moving, rather than the static background area, performance in the
anomaly detection domain was improved. For the purpose of identifying different video anomalous activities, a
number of methods have been developed, including spatiotemporal auto-encoders [20, 21], deep convolutional
auto-encoders [22], 3D convolutional auto-encoders [12] and convolutional long short-term memory (LSTM)
auto-encoders [7]. The spatiotemporal convolutional networks often struggle with capturing both spatial and
temporal features effectively, leading to blurred or inaccurate predictions. So convolutional autoencoders are
combined with attention modules to increase reconstruction performance. ADANET, an autoencoder that com-
bines a GAN model and an attention model, was proposed by Hao Song et al. [12]. Weichao Zhang et al. [23]
proposed an auto-encoder that integrates dense residual networks and self-attention. For better video prediction,
they combined gradient differences between frames and optical flow.

We propose an autoencoder, SESAA (Self-attention Enhanced Squeeze-and-Excitation Attention) to im-
prove both spatial and temporal feature extraction by integrating self-attention mechanisms and squeeze-and-
excitation (SE) blocks [24] into convolutional LSTM (ConvLSTM) networks. Additionally, a threshold optimi-
sation algorithm is implemented that combines frame brightness and reconstruction cost from the autoencoder
to provide a combined anomaly score. This algorithm finds the ideal threshold for anomaly categorisation
using Youden’s J statistic [25]. Results from experiments on benchmark datasets confirm the method’s superi-
ority over dynamic thresholding techniques, emphasising how it can be improved for more effective anomaly
detection systems in real-time surveillance.

The main contributions of the paper are as follows:

• A novel autoencoder (SESAA) is proposed that combines self-attention with squeeze-and-excitation (SE)
blocks into Convolutional LSTM (ConvLSTM) networks.

• An optimization algorithm that integrates different factors—reconstruction cost, peak signal-to-noise
ratio (PSNR) and frame brightness—and forms a combined anomaly score.

• Comparison with dynamic thresholding methods that adjust the threshold based on statistical properties
of the reconstruction cost and frame brightness.

• Evaluation on three benchmark video anomaly datasets using ROC and AUC metrics shows that the
suggested optimization framework is effective at detecting anomalous events.

The rest of the document is organised as follows: The present state of anomaly detection research is reviewed
in Section 2, which also offers details on deep learning frameworks and threshold detection methods. In Section
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3, we present our proposed approach. The experimental results are discussed in Section 4. Section 5 covers the
constraints of the proposed framework, and Section 6 concludes the article.

2 Related works

In computer vision, anomaly detection is one of the most challenging and persistent issues. Numerous public
areas, including airports, shopping malls, subway stations, and train stations, have a large number of cameras
installed due to the growing demand for public safety and surveillance. These cameras generate vast amounts
of video data, which makes it challenging and time-consuming for a human operator to spot odd or suspicious
activities. Consequently, significant efforts have been made in the direction of smart video surveillance, and
numerous strategies have been put forth to enable notable advancements in the identification of anomalies in
videos.

2.1 Deep learning models for video anomaly detection

The use of deep learning techniques to detect anomalous behaviour has advanced significantly. For anomaly
detection, unsupervised [20, 26] or weekly supervised approaches [27, 28, 29] are used instead of supervised
learning, which is unsuccessful because only trained events would be accurately detected. The two main
categories of deep learning-based algorithms for visual anomaly identification are reconstruction-based and
prediction-based approaches.

2.1.1 Reconstruction-based methods

One popular method for detecting anomalies in videos is the reconstruction-based method [7, 8, 9]. This
method’s concept is to utilize a training set of videos to create a model of normal behavior, which is then used
to detect abnormalities in test videos. Reconstruction errors are assumed to be higher in frames with anomalies
than in frames without anomalies. The autoencoder, which consists of a convolutional encoder, is the most
widely used model.

2.1.2 Prediction-based methods

Frame prediction produces a high prediction error for samples with anomalies and attempts to anticipate regular
occurrences accurately [15, 16, 18]. W. Liu et al. [15] used a video prediction system to address the anomaly
detection issue. By contrasting the expected future time frame with its ground truth, they were able to identify
an anomalous occurrence. Additionally, their method enforced a motion restriction to video prediction by
introducing a continuous optical flow between the ground truth frames and the forecast frames. But prediction
is not noise-resistant when applied to real-world datasets. Yao Tang et al. [17] created a system that strikes
a compromise between the advantages of reconstruction- and prediction-based approaches. They developed a
network that sequentially carries out frame prediction and reconstruction. Fig. 1 depicts the classification of
approaches used for anomaly detection.

2.2 Threshold detection strategy

Despite the fact that reconstruction-based methods are good at identifying irregularities in videos, thresholding
significantly affects how well they work overall. To categorize a frame as normal or abnormal, the majority of
the existing works that are now in use have preset thresholds. Jia et al. [19] presented a dynamic thresholding
method that dynamically adjusts the threshold to different light conditions using a pre-trained light module and
automatically determines the threshold using only normal training sets. However, this dynamic thresholding
approach may be sensitive to changes in frame brightness.
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Figure 1: Anomaly detection techniques

3 Methodology

This section provides a detailed presentation of our video anomaly detection framework. As previously said,
anomalous occurrences are extremely uncommon in everyday situations. As a result, gathering and labelling
training data that includes all kinds of abnormalities is challenging. So we provide an unsupervised learning
technique for identifying anomalous events in video in order to address this issue.

3.1 Data collections and preprocessing

The dataset used consists of surveillance videos collected from benchmark datasets like UCSDPed1 [30], UCS-
DPed2 [31] and the CUHK Avenue dataset [32]. The training video frames are divided into temporal sequences.
A sliding window technique is implemented to generate sequences of sz (size of the window) consecutive
frames. The video frames are normalized and resized to (256, 256, c), where c is 1 for grayscale images
(UCSD Ped1, Ped2) and 3 for color images (Avenue).

3.2 Model development

We propose a network that uses the frame reconstruction method to detect video anomalies. An autoencoder
framework that uses ConvLSTM backbone, squeeze-and-excitation (SE) block, and self-attention mechanism
is developed for reconstruction. To identify patterns of regular activity from video recordings, it uses convolu-
tion, deconvolution, and Conv.LSTM layers. A popular network for spatiotemporal data reconstruction is the
ConvLSTM network, which was introduced by Shi et al. [33]. ConvLSTM layers, which will identify temporal
dependencies in the video sequences, form the basis of the model’s core. It cannot, however, fully capture long-
term dependencies. Hu et al. [24] presented SE blocks, which enhance channel-wise feature learning through
adaptive recalibrating of channel-wise feature responses. In order to adjust channel-wise feature responses, SE
blocks will be used after the first convolutional layers. By learning attention weights, SE blocks concentrate on
the significance of each feature channel, enabling the network to suppress less valuable features and highlight
more significant ones.

Applying self-attention to videos involves expanding the mechanism to handle temporal and spatial dimen-
sions, which enables the model to recognize dependencies between different frames as well as inside individual
frames. The Transformer architecture proposed by Vaswani et al. [34] made attention mechanisms popular,
and they work well for modelling long-range dependencies in sequences, which makes them appropriate for
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use with video data. In order to capture long-range dependencies and improve the model’s capacity to focus on
pertinent features, a self-attention layer will be added before the ConvLSTM layers.

Fig. 2 shows the suggested model’s architecture. A video segment with 10 consecutive frames at a resolution
of 256 * 256 serves as the network’s input. The architecture consists of 9 layers, including two convolution
layers, a ConvLSTM layer, two attention layers, two deconvolutional layers, one ConvLSTM (DeConv) layer,
and one 1 x 1 convolution in the decoder part. Temporal and spatial encoders are included in the encoder
section. Spatial and temporal decoders are included in the decoder also.

Figure 2: Proposed architecture

3.3 Model Training

The model is trained on normal video sequences to identify usual patterns of behaviour. The suggested model’s
training phase is depicted in Fig. 3. The input video segments are converted into spatial information using the
convolution layers. The convolution process uses a sliding window to perform matrix multiplication between
the picture patches and the filter. A reconstruction of the input sequence is the model’s output when it gets an
L-length video series as input. Each layer’s output size is indicated by the numbers at the extreme right of Fig.
2. One frame at a time is fed into the spatial encoder, which processes L = 10 frames. The temporal encoder
is then fed the concatenated encoded features of the ten frames in order to encode motion. The encoders and
decoders mirror each other to rebuild the video volume.

The model’s encoder and decoder components both make use of the ConvLSTM layer. ConvLSTM was
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developed to record video sequences’ temporal dynamics as well as spatial information. In addition to the
ConvLSTM layer, the decoder part also contains deconvolutional or convolutional transpose layers for recon-
struction. The hyper-parameters, including the number of kernels, kernel size, and strides, were empirically
established prior to the kernel values being initialised at random. Using Mean Squared Error (MSE) as the loss
function, the model is modified to lessen the discrepancy between the actual and predicted frames.

The testing phase utilizing the optimal thresholding approach is depicted in Fig. 4. The network receives a
video segment as input that is made up of a series of grayscale or RGB images. Because the model is trained
for normality, an abnormal frame will have higher MSE values, while a regular frame will have lower MSE
values. A frame’s normality score falls between 0 and 1. An optimal threshold (T) is determined using Youden’s
J statistic [25] utilizing the combined anomaly score, which is determined by a number of criteria, including
reconstruction cost, frame brightness, and Peak Signal-to-Noise Ratio (PSNR). If the combined normality score
(R) is less than threshold T, then it shows some abnormality in the frame.

Figure 3: Training the autoencoder with self-attention and channel attention layers for video anomaly detection

Figure 4: Testing phase of self-attention and channel attention autoencoder for video anomaly detection

3.4 Feature Extraction

During the training phase, no pre-trained network was utilized in order to extract features. The reconstruction
cost E is calculated as the L2 norm between the original and reconstructed sequences, which is extracted for
each video sequence using the trained autoencoder:

E = ∥I − IR∥2 (1)

where:

• I is the pixel intensity at a location in the original image,

• IR is the intensity learned by the Convolutional Autoencoder.



140 Anjali.S and Don.S / Electronic Letters on Computer Vision and Image Analysis 24(1):134-152, 2025

The sequence reconstruction cost sc(k) for n frames can be computed as:

sc(k) =

k+n∑
k=0

E(k) (2)

Where E(k) is the reconstruction cost for each frame at index k.
The regularity score sr is computed by scaling between 0 and 1, and the abnormality score sa is obtained

by subtracting it from 1.

sr(k) =
sc(k)− sc(k)max

sc(k)min
(3)

The abnormality score is:

sa = 1− sr (4)

Peak Signal-to-Noise Ratio (PSNR) is a statistic used in anomaly detection to evaluate the quality of a re-
constructed image. PSNR calculates the ratio of noise (reconstruction error) to the maximum signal (image
intensity). Better image quality and a smaller reconstruction error are indicated by a greater PSNR. A Because
the autoencoder model is unable to effectively rebuild the frame, a low PSNR indicates a high reconstruction
error, which could indicate an anomaly in the video sequence. Because low PSNR values indicate possible
irregularities, PSNR can be used to set a threshold for spotting anomalous sequences.

With the following formula, the Peak Signal-to-Noise Ratio (PSNR) is determined:

PSNR = 10 · log10
(
MAX2

I

MSE

)
(5)

Where:

• MAXI represents the maximum pixel intensity possible in the image. The value of MAXI is usually
255 for images that have pixel values between 0 and 255, such as 8-bit images. For normalized floating-
point images, MAXI is usually 1.0.

• The average squared difference between the original picture I and the reconstructed image Î is quantified
by ‘MSE (mean squared error). It is described as:

MSE =
1

N

N∑
i=1

(Ii − Îi)
2 (6)

Where:

• The pixel intensities at the i-th location in the original and reconstructed pictures are denoted as Ii and
Îi, respectively.

• N denotes the total number of pixels.

3.5 Threshold detection

To determine the optimal threshold, Youden’s J statistic [25] is utilized, which maximizes the difference be-
tween TPR (true positivity rate) and FPR (false positivity rate). If the combined regularity score is less than the
optimal threshold, frames will be identified as anomalous. The optimum threshold is compared to the dynamic
threshold, which varies with each frame. The dynamic threshold is calculated using the normalised frame
brightness as well as the standard deviation and mean of the combined score.
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3.6 Evaluation

The effectiveness of our proposed method is evaluated using the area under the curve (AUC) and receiver
operating characteristic (ROC) measures.

(a) Normal frames from the UCSD dataset.

(b) Abnormal frames from the UCSD dataset.

(c) Normal frames from the Avenue dataset.

(d) Abnormal frames from the Avenue dataset.

Figure 5: Normal and anomalous frames from benchmark datasets.
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4 Experimental Results

4.1 Dataset description

Three benchmark video anomaly detection datasets are used in this paper: CUHK Avenue [32], UCSD Ped1
[30] and UCSD Ped2 [31]. Each dataset has a test set that contains both anomalous and normal frames and a
training set that only contains normal films.

• CUHK Avenue:

This dataset was made up of 21 test videos and 16 training videos, of 15,324 and 15,328 frames, respec-
tively. 360 x 640 pixels was the resolution of every video frame. 47 unusual behaviors were captured,
including throwing objects, going in the wrong way, and rushing across gates.

• UCSD Ped1 dataset:

This dataset consists of 36 testing and 34 training video clips, each containing 200 frames. In the video,
individuals are seen moving in groups to and from the camera. In this dataset, abnormal occurrences
were characterized as people walking on the grass and the appearance of a wheelchair, skater, or cyclist.

• UCSD Ped2 dataset:

The UCSD Ped2 dataset consists of 12 testing and 16 training video clips with varying frame counts.
Pedestrians can be seen strolling parallel to the camera plane in the films. Wheelchairs, carts, bicycles,
vehicles, and skaters are a few of the abnormalities discovered in the walkway. Fig. 5 shows some
example frames of normal and abnormal examples of these three datasets.

4.2 Preprocessing and training

Three benchmark datasets—UCSD Ped1, UCPed2, and Avenue—are used to train the model. Videos are
resized to 256 by 256 pixel resolution, and frames are normalized to fall between 0 and 1. To verify the
adaptability of the model, both RGB and greyscale videos are used. Reconstruction error of the input volume
is minimized to train the model. Here, we employ Adam Optimiser since it can automatically calculate the
learning rate by using the model’s weight update history. Regular video sequences are used for training in order
to teach the model the patterns of usual behaviours.

4.3 Implementation details

The testing videos contains some anomalies which will not be reconstructed properly by the autoencoder and
hence the regularity score will be low for such frames. The regularity score is calculated as the mean squared
error between the original and reconstructed frames. Four different methods were explored in order to deter-
mine the optimum threshold, and it was found that the combined regularity score calculation and optimization
produced the best results.

• Method 1 : Statistical Thresholding for Anomaly Detection (STAD)

The regularity score’s mean and standard deviation are used to determine the optimal threshold. The
dynamic threshold stands in contrast to this. Experimental results on a variety of test videos demonstrate
that anomalous frames cannot be correctly detected using this optimal threshold detection method. For
UCSD Ped2 dataset, the normal frames where there is no cycle on the walkway are also detected as
anomalies. Figure 6 displays the experimental findings on the UCSD Ped2 and Avenue datasets.

• Method 2 : Gaussian-Smoothed Statistical Thresholding (GSST)
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A Gaussian smoothening filter is applied to the regularity scores and then optimal threshold is calculated
using the standard deviation and mean of the regularity scores. As demonstrated on Fig. 6, the results are
not better when compared to Method 1 for identifying the optimal threshold.

• Method 3: Weighted PSNR Fusion with Youden’s J Thresholding (W PSNR+YT)

Here, the PSNR value for every sequence is computed. (Anomalies are indicated by lower PSNR values).
After that, by applying predetermined weights that normalize the brightness, PSNR, and reconstruction
cost values, the combined score is calculated. The optimal threshold at which the AUC is maximized
is then found using Youden’s J statistic. As shown in Fig. 7, the results are better using the method of
combined anomaly score generation and optimization using Youden’s J statistic. These results are also
contrasted with the dynamic threshold.

For Test 32 of UCSD Ped1, as seen in Fig. 7, the low regularity score can be attributed to the bicycle
on the walkway at the beginning. The score for regularity begins to rise after the bicycle departs. The
regularity score drops immediately at the entry of a second bicycle at frame 60 and then rises again
immediately upon its departure. By employing method 3, the best threshold was found to be 0.552,
which allows for the accurate detection of abnormal bicycle entrance frames in pedestrian ways. As seen
in Fig. 7, a person is throwing a bag, which is considered anomalous with respect to Test 5 of the Avenue
dataset. After frame 30, the regularity score decreases, and as the person leaves, it increases. The optimal
threshold obtained is 0.4.

• Method 4 : Weighted Fusion with Youden’s J Thresholding (WF+YT)

Here combined score is determined using normalized reconstruction cost and brightness with predefined
weights. Here also Youden’s J statistic is used to determine the optimal threshold for identifying anoma-
lous frames. Similar to approach 3, the results are satisfactory here as well. Since PSNR values are
somewhat sensitive to frame brightness, the PSNR calculation is not done in the combined score calcu-
lations here. For test 5 of the UCD Ped2 dataset, as shown in Fig. 8, a bicycle enters the pedestrian
pathway at frame 60. As a result, the regularity score decreases, and it increases when the bicycle leaves.
Fig. 8 displays the regularity scores obtained from the UCSD Ped1 dataset for Test Videos 32 and 31,
UCSD Ped2 dataset for Test Videos 5 and 7, and the Avenue dataset for Test Videos 05 and 15. The AUC
values for the bench mark datasets are depicted in Table 1.

UCSD Ped1 UCSD Ped2 Avenue
Method Optimal AUC Adaptive AUC Optimal AUC Adaptive AUC Optimal AUC Adaptive AUC
STAD 0.62 0.67 0.36 0.37 0.20 0.03
GSST 0.65 0.70 0.68 0.64 0.87 0.80
W PSNR+ YT 0.77 0.77 0.65 0.68 0.80 0.76
WF+YT 0.98 0.84 0.83 0.82 0.91 0.75

Table 1: Comparison of area under the ROC curve (AUC) of different methods. A higher AUC is better.

4.4 Evaluation

The optimum threshold is compared with the dynamic threshold, and the irregularities are colored as shown
in Fig. 8, which plots the regularity score curve. This study evaluated the model’s performance using frame-
level receiver operating characteristics (ROC) and its area under the curve (AUC) score, in line with previous
methods [35], [7], and [20]. Separability is measured by the AUC score. It illustrates the model’s capacity
for class discrimination. A model that achieves an AUC score of 1 is perfectly able to differentiate the two
classes. When the model has an AUC value of 0, it is reciprocating the findings, predicting a positive class as
negative and vice versa. The model’s inability to distinguish between classes is indicated by an AUC of 0.5. By
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computing the TPR and FPR values at each classification threshold between 0 and 1, the ROC curve is plotted
at every feasible threshold. The ROC curve for methods 3 and 4 of Section 4.3 is shown in Fig. 9. As compared
to methods 1 and 2, the AUC values for methods 4 and 5 demonstrate a notable improvement, as seen in Table
1.

(a) (b)

(c) (d)

Figure 6: Regularity scores for STAD and GSST: (a) STAD for Test 32 of UCSD Ped1, (b) STAD for Test 05
of Avenue, (c) GSST for Test 32 of UCSD Ped1, (d) GSST for Test 05 of Avenue.

(a) (b)

Figure 7: Regularity score for W PSNR+YT: (a) Test 32 of the UCSD Ped1 dataset, (b) Test 05 of the Avenue
dataset.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Regularity scores for Method 4 (WF+YT) (a) Test 32 of UCSD Ped1 (b) Test 31 of UCSD Ped1 (c)
Test 05 of UCSD Ped2 (d) Test 07 of UCSD Ped 2 (e) Test 05 of Avenue (f) Test 15 of Avenue

4.5 Result Analysis

Our suggested method is effective in determining the optimum threshold to use for anomalous occurrence
recognition, according to experiments conducted on three benchmark video anomaly detection datasets. The
optimal thresholding is also contrasted with the AUC that is obtained by the dynamic thresholding approach.
This suggests that the best way to identify anomalous frames is to compute the threshold using the combined
anomaly score that was obtained from methods 3 and 4 of Section 4.3. It also demonstrates how illumination in
real-time surveillance videos affects the dynamic threshold. Table 2 shows the optimal threshold obtained for
three bench mark datasets using the four approaches mentioned in Section 4.3. The comparison of frame-level
AUC% of popular eight reconstruction-based deep learning techniques is shown in Table 3. This demon-
strates that the proposed method performs better in detecting anomalous occurrences than the most advanced
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instruction-based deep learning systems.

Method UCSD Ped1 UCSD Ped2 Avenue
Test 32 Test 31 Test 05 Test 7 Test 05 Test 15

STAD 0.96 0.91 0.99 0.82 0.97 0.90
GSST 0.78 0.64 0.81 0.64 0.79 0.66
W PSNR+ YT 0.55 0.3061 0.42 0.51 0.40 0.59
WF+YT 0.61 0.38 0.50 0.44 0.50 0.43

Table 2: Optimal thresholds obtained for the four approaches on benchmark datasets.

Method UCSD Ped1 UCSD Ped2 Avenue
Chong et al. [20] 89.8 87.4 80.3
Hasan et al. [36] 81.0 90.0 70.2
Deepak et al. [7] - 83.0 82.0
Nawaratne et al. [37] 75.2 91.1 76.8
Fang et al. [38] 95.6 86.3 73.2
Li et al. [39] 92.9 83.5 -
Song et al. [12] 90.3 90.4 89.2
Chang et al. [40] 96.5 86.0 73.0
Proposed (SESAA) 98.0 83.0 91.0

Table 3: Comparison of frame-level AUC of the different state-of-the art reconstruction-based deep learning
methods in terms of AUC% on three benchmark datasets.Better performance is indicated by a higher AUC.
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(a) UCSD Ped1: WF + YT (b) UCSD Ped1: W PSNR + YT

(c) UCSD Ped2: WF + YT (d) UCSD Ped2: W PSNR + YT

(e) Avenue: WF + YT (f) Avenue: W PSNR + YT

Figure 9: Optimal and adjusted ROC curves for the four methods across benchmark datasets: UCSD Ped1 (a,
b), UCSD Ped2 (c, d), and Avenue (e, f).
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5 Challenges

Some of the challenges faced in detecting anomalies in videos using the optimal thresholding technique are as
follows:

• Interpretability: In some applications, it is crucial to comprehend the reason behind the selection of a
specific threshold. Nevertheless, complicated computations or methods may be used during the threshold
optimization process, making the outcome more difficult to understand.

• Threshold Drift: The ideal threshold may drift over time as a result of modifications to the underlying
data distribution. Maintaining performance requires continuous calibration and monitoring, which can
be resource intensive.

• Computational Complexity: Searching for an optimal threshold, especially in complex surveillance
videos, can be computationally expensive. This is particularly challenging in real-time systems where
quick decisions are required.

6 Conclusion

In this work, we proposed an autoencoder that enhances video anomaly detection by utilizing attention mech-
anisms and a thresholding technique for optimal threshold identification. The autoencoder combines self-
attention with squeeze-and-excitation (SE) blocks. Reconstruction cost, frame brightness, and Peak Signal-to-
Noise Ratio (PSNR) are the three criteria that are combined in this optimized framework to calculate thresholds
automatically, allowing the system to adapt flexibly to various conditions. A comparison is made between
this approach and dynamic thresholding techniques, which modify the threshold according to the statistical
characteristics of the reconstruction cost and frame brightness. ROC and AUC measurements have been used
to provide a thorough comparison and visualization of the findings. Our tailored method offers considerable
advantages in selecting the optimum threshold for effective anomaly identification, as demonstrated by exper-
imental results on three baseline datasets. With this technique, alerts for unusual activity can be generated in
real-time monitoring by utilizing the optimal threshold.
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