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Abstract

The ability to detect moving objects is of great importance in a wide range of visual surveillance sys-
tems, playing a vital role in maintaining security and ensuring effective monitoring. However, the primary
aim of such systems is to detect objects in motion and tackle real-world challenges effectively. Despite the
existence of numerous methods, there remains room for improvement, particularly in slowly moving video
sequences and unfamiliar video environments. In videos where slow-moving objects are confined to a small
area, it can cause many traditional methods to fail to detect the entire object. However, an effective solution
is the spatial-temporal framework. Additionally, the selection of temporal, spatial, and fusion algorithms
is crucial for effectively detecting slow-moving objects. This article presents a notable effort to address
the detection of slowly moving objects in challenging videos by leveraging an encoder-decoder architecture
incorporating a modified VGG-16 model with a feature pooling framework. Several novel aspects charac-
terize the proposed algorithm: it utilizes a pre-trained modified VGG-16 network as the encoder, employing
transfer learning to enhance model efficacy. The encoder is designed with a reduced number of layers and
incorporates skip connections to extract essential fine and coarse-scale features crucial for local change
detection. The feature pooling framework (FPF) utilizes a combination of different layers including max-
pooling, convolutional, and numerous atrous convolutional with varying rates of sampling. This integration
enables the preservation of features at different scales with various dimensions, ensuring their representa-
tion across a wide range of scales. The decoder network comprises stacked convolutional layers effectively
mapping features to image space. The performance of the developed technique is assessed in comparison to
various existing methods, including those by CMRM, Hybrid algorithm, Fast valley, EPMCB, and MOD-
CVS, showcasing its effectiveness through both subjective and objective analyses. It demonstrates superior
performance, with an average F-measure (AF) value of 98.86%, average precision of 98.86%, average recall
of 98.87%, and a lower average misclassification error (AMCE) value of 0.85. Furthermore, the algorithm’s
effectiveness was validated on Imperceptible Video Configuration video setups, where it exhibits superior
performance.
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1 Introduction

Visual surveillance plays a crucial role in ensuring safety and typically involves two main steps: foreground
extraction and motion tracking [1]. In developing a robust surveillance architecture, the detection of localized
changes is essential [2, 3]. Over the past several decades, observing moving object in challenging video envi-
ronments has become a difficult and actively researched area within visual surveillance systems. Foreground
segmentation from image frames finds applications in various domains such as activity recognition [4], traffic
monitoring [5], industrial surveillance [6], and underwater monitoring [7]. This process involves differentiating
moving objects from the background in complex video sequences, effectively carrying out a binary classifica-
tion task where background pixels are discarded, and those corresponding to moving objects are preserved.
Separating the foreground from complex video scenes is challenging due to dynamic backgrounds, camera
movements, missing information, and slow-moving objects. Background subtraction (BGS) approaches [8]
have traditionally been used to separate foreground from background, effectively isolating moving objects in
image frames. Despite the development of numerous techniques worldwide, current BGS methods tend to per-
form well only under certain conditions and often depend on manual parameter adjustments and handcrafted
features. This highlights the need for more efficient and robust approaches to moving object detection. Deep
learning frameworks, which have significantly advanced computer vision applications, are now extensively
utilized for medical image analysis [9], Grasping moving object [10], Road detection and monitoring [11], Sus-
tainable development [12], and moving object detection [13, 14, 15, 16] due to their ability to capture low, mid,
and high-level features. Moreover, employing transfer learning strategies can further enhance the efficiency of
deep neural networks (DNNs) in this regard.

Numerous limitations have been recognized in the DNN designed for moving object detection. Integrating
DNNss into visual surveillance systems increases system complexity. It has been observed that as the depth of
network layers increases, so does the model’s complexity. Moreover, training deep neural networks requires a
larger dataset of sample frames. Furthermore, existing techniques rarely feature an end-to-end architecture to
detect the objects in motion.

Thus, a notable encoder-decoder model is developed to efficiently tackle various challenges encountered
in slow-moving video scenes. To enhance the robustness of the model, the proposed approach utilizes an
altered pre-trained VGG-16 DNN as the encoder. The VGG-16 deep neural network [17] is chosen as the
encoder for this application due to its proven effectiveness and widespread adoption in various computer vision
tasks. Several advantages make the VGG-16 a robust encoder network which includes: VGG-16 has been
pre-trained on the ImageNet dataset, which contains over a million images across a thousand classes. This
extensive pretraining enables the network to generalize well to a wide range of visual features, making it
suitable for transfer learning in various domains. Also, the VGG-16 architecture is simpler compared to other
deep networks like ResNet or Inception, with a straightforward structure that is easy to implement and modify.
Its standardized architecture, with consistent convolutional filter sizes (3 x 3) and max-pooling layers, ensures
a balance between model complexity and computational efficiency. Further, VGG-16 has been successfully
applied in numerous tasks beyond image classification, such as object detection, image segmentation, and
even style transfer. Its ability to capture hierarchical features from images has made it a popular choice for
applications requiring detailed spatial feature extraction. Furthermore, given its hierarchical feature maps,
VGG-16 is particularly effective in feature transfer, where the pre-trained network serves as a robust feature
extractor. This quality is beneficial in tasks where computational resources are limited, but high accuracy is
desired.

This approach takes advantage of the learned weights of the initial two blocks from the VGG-16 network,
while specifically fine-tuning the third block weights on challenging databases. The weights of the initial two
blocks of the pre-trained VGG-16 architecture in the BGS model are kept unchanged. However, to tackle
the complexities of a challenging dataset, the weights of the third block are updated using transfer learning
strategies [1]. By doing so, the model becomes more resilient and better equipped to handle complex data sce-
narios. Utilizing transfer learning, the modified VGG-16 network retains pertinent features crucial for moving
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object detection. The feature maps generated by the encoder are then processed through a feature extraction
framework, capturing a variety of details at multiple scales. The decoder framework in the developed scheme
efficiently translates feature labels into pixel labels.

Hence, the developed architecture makes four main contributions:

* This study presented an enhanced feature pooling framework (FPF) integrated with the revised VGG-16
architecture, which effectively captures intricate details at various levels, particularly for objects with
slow motion.

* The suggested framework is relatively lightweight compared to competitive architectures as it utilizes
only three blocks from the VGG-16 architecture.

» Compared to recent existing methods, the suggested approach achieved an average F-measure (AF) of
98.86%, average precision of 98.86%, average recall of 98.87%, and a low average misclassification error
(AMCE) of 0.85, using fewer training samples and without relying on temporal information.

* Incorporating a transfer learning process into the developed technique allows the network to effectively
learn weights and improve overall performance.

The effectiveness of the presented model is validated using benchmark datasets tailored for slowly-moving
object detection, as referenced in [18, 19]. In the proposed method, ten slow-moving object videos are gathered
from the dataset. This dataset includes a variety of video sequences characterized by different frame sizes
ranging from 144 x 176 to 360 x 528 , including a total of 13,606 frames, and content types, ensuring a broad
spectrum of testing scenarios. The high-quality, uncompressed format of these videos preserves the original
details, facilitating accurate bench-marking and analysis. The developed algorithm’s outcomes are compared
against five existing methods to corroborate our findings.

We assessed the performance using various metrics such as AF (average F-measure) and AMCE (average
misclassification error). We assessed the performance using various metrics such as AF (average F-measure)
and AMCE (average misclassification error). The F-measure balances the trade-off between precision and
recall, providing a single metric that reflects the quality of the detection in scenarios where both false positives
and false negatives are important. A high F-measure indicates that the detection algorithm effectively identifies
moving objects (high recall) without mistakenly classifying too many non-moving objects as moving (high
precision). This metric is crucial when the focus is on both detecting as many true moving objects as possible
while minimizing the number of false alarms. The average misclassification error quantifies the proportion of
pixels or objects that are incorrectly classified in the detection process, encompassing both false positives and
false negatives. It provides a clear indication of the overall accuracy of the moving object detection system,
giving a straightforward measure of how often the algorithm fails to correctly classify the objects. Lower
misclassification error signifies a more accurate detection system, which is essential for applications where
precision and accuracy are critical. To assess the performance of the developed technique, both subjective and
objective assessments were conducted, demonstrating its efficacy.

The subsequent sections of the article are structured as follows: Section 2 outlines the existing literature on
moving object detection. Section 3 delves into an in-depth exploration of the proposed model, accompanied
by graphical illustrations. Section 4 presents the analysis of empirical results and an ablation study. Finally,
Section 5 offers the conclusions drawn from the article.

2 Related Literature

2.1 Existing Methods for Slow Moving BGS

The method of recognizing and monitoring objects that move at a slow pace is called object detection. Gen-
erally, the movement of these objects is limited to a small region. Despite significant advancements in object
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detection, existing methods still struggle to accurately detect slow-moving objects in complex environments,
primarily due to minimal spatial changes and background noise. This study aims to address this challenge
by employing a novel VGG-16 architecture enhanced with a feature pooling mechanism to improve detection
accuracy in these scenarios. The predominant techniques for detecting slow-moving objects include frame sub-
traction (FS) [20], optical flow (OF) [21], foreground detection (FD) [22], feature extraction techniques (FE)
[23, 24], algorithmic learning methods (AL) [25]. The chosen method depends on the particular application,
the nature of the objects moving at slow speed, and the unrestricted computative aids. A combination or mod-
ification of different methods might be required to accurately detect and subsequently track slowly moving
objects in various situations [26]. The FD method is valuable for identifying swiftly or moderately moving
objects in a scene. It gives efficient computational processing, real-time results, and accurate foreground seg-
mentation particularly when objects move slowly against a mostly stationary background. Nevertheless, this
method is affected by lighting variations, confined to unchanging backgrounds, encounters challenges with ob-
struction, and requires background construction if the same is unavailable. Furthermore, it struggles to detect
slow-moving objects because of minimal spatial changes in the object’s pixel area [27, 28, 29]. The motion
vectors of pixels are utilized in the OF method for moving object detection to ascertain the direction and speed
of movement. This technique excels in accurately identifying and tracking fast-moving objects. Consequently,
it proves highly adaptable to variations in texture, lighting, and other environmental factors, making it optimal
for real-time object tracking in video surveillance scenarios. However, it struggles to effectively handle occlu-
sion and is susceptible to image noise. Moreover, it lacks the capability to offer depth details about the tracked
object. It may not be effective for stationary or slow moving objects as it dependent on the object movement
[21, 30, 31]. FD is a widely-used technique for identifying moving objects within a sequence of images. It pro-
vides a swift and real-time method suitable for integration into surveillance systems. By analyzing variations
between frames, FD offers a cost-effective solution capable of detecting even partially obscured objects. How-
ever, its susceptibility to artifacts and minor disturbances such as sensor instability or variations in illumination
may result in false positives, thus potentially compromising the effectiveness of the results. It solely identifies
moving objects that contrast with the background, rendering it inadequate to locate objects with a homogeneous
appearance to the background [32, 33]. FE methods excel at managing challenging scenarios where an object’s
appearance undergoes changes due to complex backgrounds or varying lighting conditions. These techniques,
designed to extract specific image features, efficiently handle computational demands and can process video
streams in real-time. However, their performance significantly declines when robust feature detection is com-
promised by noise, occlusion, or other factors. Moreover, adapting to new object classes or motion features
often requires frequent adjustments or retraining. Notably, these methods prioritize primitive visual features
and devoid of advanced semantic understanding. Consequently, they may struggle to distinguish between ob-
jects with similar basic characteristics, resulting in false detections or tracking deviations [34, 35, 36, 37]. On
the other hand, some of the existing ML techniques have been explored in the literature for the detection of
slowly moving objects. Wei Liu et al. introduced the Single Shot Multi Box Detector (SSD) object detection
algorithm, which effectively achieves a optimal trade-off between precision and speed for object detection in
images. SSD creates the final set of object detections by applying non-maximum suppression (NMS) to remove
redundant bounding box predictions. The main advantages of SSD are its speed, ease of use, and multi-scale
object detection capabilities. However, SSD sacrifices some accuracy in favor of quicker inference times. It de-
tects objects at different scales by employing a predefined set of anchor boxes. However, it can be challenging
to select the appropriate sizes and proportions for these anchor boxes. Significant deviations from these pre-
defined anchor boxes could lead to incorrect object identification. It is also unable to handle heavily obscured
objects [38]. The introduction of Faster R-CNN by Ren et al. significantly impacted computer vision, becoming
a widely adopted object detection technique [39]. This approach precisely and efficiently identifies objects by
utilizing a region proposal network to create contender object bids. This method allows for end-to-end training
of the object detection system, ensuring maximum efficiency. However, it is more intricate than earlier object
detection techniques. It includes elements like a shared convolutional network core, a target-specific classifier,
and a region proposal network. Its complexity may make it more challenging to comprehend and apply. Focal



Panigrahi et al. / Electronic Letters on Computer Vision and Image Analysis 24(2):49-69, 2025 53

Loss is a groundbreaking loss function specifically tailored for detecting densely packed objects applications,
including object recognition and individual instance segmentation by Tsung-Yi Lin et al. The focal loss sug-
gests a focusing parameter, an extra hyper-parameter, that regulates the rate at which the loss decreases for
simple negative instances. Selecting an optimal parameter configuration requires meticulous adjustment, and
an incorrect configuration can impact the evaluation of the outlined approach [40]. Corsel et al. [41] introduced
a spatio-temporal deep learning model, derived from YOLOVS, which harnesses temporal context by analyzing
sequences of frames simultaneously. The model substantially enhances the recognition of minuscule moving
objects in aerial surveillance and person detection contexts, all the while maintaining the detection accuracy of
stationary objects. Despite its effectiveness in enhancing the detection of tiny objects through temporal con-
text, this approach may require significant computational resources and may not be well-suited for real-time
applications due to increased processing time. CornerNet, an innovative object detection framework introduced
by Hei Law and Jia Deng, treats objects as paired key-points to facilitate detection. In CornerNet, objects are
depicted as key-points with their spatial information modeled, resulting in enhanced localization accuracy and
decreased false positives. However, this method, which perceives objects as focal points, may encounter chal-
lenges when handling objects with intricate or significantly varied poses. Given the model’s primary emphasis
on corner detection, its effectiveness might be diminished in scenarios where key-points lack prominence or
informative [42]. Lee et al. [43] proposed Adversarially-trained feature interpolator Generative Adversarial
Networks (AFI-GAN). AFI-GAN enhances feature interpolation within Feature Pyramid Networks (FPNs) us-
ing adversarial training, resulting in more precise object detection by efficiently managing scale variations. By
addressing the limitations of traditional feature interpolation methods, AFI-GAN can potentially improve the
accuracy of object detection systems, especially in scenarios with significant scale variations. While AFI-GAN
may improve feature interpolation within FPNs, its effectiveness could vary across different datasets or object
detection tasks, limiting its generalization capability in diverse settings. Nevertheless, all the aforementioned
techniques can only accurately identify objects that are moving swiftly or moderately within the scene. This in-
spired us to utilize the VGG-16 architecture with structural modifications to develop a framework for detecting
slow-moving objects.

3 Proposed Method

This work introduces an innovative cutting-edge deep neural network designed specifically extract foreground
regions in challenging scenarios. The model exhibits remarkable resilience and efficiency, making it a robust
solution for accurately separating foreground objects from the background in intricate video scenes. The pro-
posed model employs a DNN architecture, in which a modified version of the VGG-16 network functions as
the encoder. To accurately identify objects of varying scales within video frames, the model also developed
a feature pooling framework (FPF). This combination of advanced techniques enables the model to efficiently
detect and process complex visual data, making it an effective solution for a wide range of applications requir-
ing object detection in video content. Additionally, the FPF module is capable of preserving both scattered and
concentrated features from image frames, enabling effective local change detection. The decoder network then
learns to map feature labels to pixel labels accurately. The comprehensive structure of the proposed network is
depicted in Fig. 1.

3.1 Encoder Network

In this study, we utilize a pre-trained VGG-16 network as the encoder network, a commonly employed architec-
ture in various image-processing tasks. However, its potential for foreground segmentation remains unexplored
for slow moving object detection. Here, we leverage the capabilities of the VGG-16 network specifically for
foreground separation. The VGG-16 architecture comprises five blocks, each of which is equipped with convo-
lutional layers and rectified linear unit (ReLU) functions. This unique combination of components allows the
model to preserve spatial details from the input image and selectively boost neuron activity through the ReLU
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Figure 1: Structural diagram illustrating the proposed BGS model.
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Figure 2: Structural overview of the proposed VGG-16 architecture.

activation function. As a result, the model’s overall performance is enhanced, making it a powerful tool for a
variety of computer vision applications.

The developed model is built upon a modified version of the deep VGG-16 network, focusing on the initial
three blocks as shown in Figure 2. The weights of the initial two blocks of the pre-trained VGG-16 architecture
in the BGS model are kept unchanged. However, to tackle the complexities of a challenging dataset, the
weights of the third block are updated using transfer learning strategies [1]. This adaptation process enables
the model to leverage existing learned features and improve its performance in handling the challenges of
the dataset. Also, transfer learning facilitates the transfer of knowledge from one task domain to another,
enhancing the model’s adaptability and efficiency, particularly when training data is limited. The third block
of VGG-16 strikes a balance between low-level and high-level feature extraction. While the initial blocks
capture low-level details such as edges and textures, the third block begins to abstract more meaningful patterns
like shapes and object parts, which are crucial for downstream tasks such as object detection or segmentation.
Fine-tuning only this block allows adaptation to the target dataset without compromising the general feature
representations learned in earlier layers or overfitting due to the high specialization of deeper layers. This
selective tuning also reduces computational cost while retaining sufficient learning ability for domain-specific
improvements. The proposed approach seeks to enhance the use of fine spatial detail and frequency details
by excluding the fourth and fifth blocks of the VGG-16 architecture. Within the initial encoder block, 3 x 3
convolutional layers with 64 and 128 filters are employed to capture fine-scale features [1]. Through a series
of comprehensive experiments, it has been consistently observed that utilizing a configuration of (64, 128)
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Figure 3: Structural layout of the developed feature pooling framework.

filters in the developed model significantly enhances performance, yielding remarkable AF and AMCE scores
of 98.86% and 0.85, respectively. In comparison, employing (16, 32) or (32, 64) filters resulted in lower AF and
AMCE values of 93.74% and 0.94, and 97.52% and 0.89, respectively. However, pushing the proposed model
with (128, 256) filters can afford a marginal improvement to 98.89% and 0.83 for AF and AMCE scores, albeit
at the cost of significantly increased computational resources. Taking these findings into consideration, the (64,
128) filter configuration has been considered for the proposed algorithm. This choice optimally balances high
computational efficiency with an exceptional capability to meticulously maintain the fine-scale details in the
visual sequences. This decision not only upholds the model’s performance but also ensures the preservation of
critical nuances from video scenes, making it a preferable choice for real-world applications. Subsequently, to
maintain the integrity of the feature representation, the decoder network receives these features through global
average pooling (GAP) and residual connections.

3.2 Feature Pooling Framework

In this study, a novel FPF module is introduced, strategically positioned between the encoder and decoder
networks, as depicted in Figure 3. The aim is to precisely capture objects of various sizes within challenging
slow-moving video scenes. The FPF module incorporates multiple elements, such as a hybrid max-pooling
layer paired with a 64-channel convolutional layer featuring a 1 x 1 filter, a convolutional layer with 64 channels,
and a 3 x 3 filter. It also integrates atrous convolutional layers with sampling rates of 4, 8, and 16. In particular,
the method we have developed makes effective use of atrous convolutional layers, employing a 64-channel
3 x 3 filter size configuration. The inclusion of a max-pooling layer is vital as it helps retain the most critical
information, denoted as 71, by using 2 x 2 windows from the outcome of the encoder network 7. Moreover,
the FPF block incorporates multiple layers, including the convolutional layer and atrous convolutional layers
whose outcomes are denoted as 72, 13, 14, and ns. These layers synergistically capture both insubstantial and
dense features from the feature space 7, resulting in a robust and comprehensive representation of the data.
As a result, the features 11, 12, 13, 74, and 75 are concatenated across channels and then subjected to contrast
normalization. Subsequently, a spatial dropout layer (SDL) is utilized with a 0.25 dropout rate, effectively
introducing regularization to the FPF block. This dropout layer contributes to the generation of 240 feature
maps, enhancing the overall feature extraction process. The effectiveness of an SDL with a rate of 25% in
the proposed algorithm is often found to outperform other values for several key reasons, which are discussed
as follows: An SDL with a rate of 0.25 functionally drops out 25% of the feature maps across the entire
spatial dimensions for a segment of the input tensor. By doing so, it reduces the correlation among feature
maps and encourages the network to learn more diverse and robust feature representations. Setting the rate to
0.25 offers an optimal balance between overfitting and under-fitting. Too low a dropout rate may not impact
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co-adaptation and over-fitting issues effectively, while too high a dropout rate might lead to a complete loss of
useful information, hindering learning and causing under-fitting. A 25% dropout rate strikes a balance, allowing
the network to learn but with enough limitations to prevent it from memorizing training data too closely. At
0.25, the network still maintains 75% of its feature information, ensuring its learning sufficient representations
while concurrently mitigating the risk of over-reliance on specific features. This setup allows the network to
handle noise and variations in input data better. The choice of 0.25 balances the regularization strength against
the computational cost. Lower dropout rates provide less regularization but require more training epochs to
achieve the same effect, while higher rates increase the risk of over-regularization without offering proportional
benefits. A rate of 0.25 is often found to be practical in terms of achieving efficient regularization without
excess computational load. The results of the experiments demonstrate that replacing batch normalization
with contrast normalization improves the effectiveness of the model. Moreover, employing SDL adequately
preserves spatial information while minimizing redundant data. These findings highlight the effectiveness of
these techniques in enhancing the overall performance and efficiency of the developed model.

3.3 Decoder Network

Accurate detection of slow-moving objects within complex video scenes heavily relies on spatial data. To
preserve this essential information, the decoder network is based on the designed model as presented in Figure.
1 is built with a series of convolutional layers. This enables the model to effectively capture and preserve the
spatial details, thereby improving the accuracy of slow-moving object detection. Initially, the decoder network
converts the 240 feature maps obtained from the FPF block into a set of 64 feature maps. This transformation
is achieved through the utilization of a convolutional layer that employs 64 filters, each with a size of 3 x 3.
These obtained features then undergo contrast normalization. These feature maps are then merged with the
fine-scale features extracted from the final layer of the first encoder block, using the ReLLU function and a GAP
layer. The inclusion of the GAP layer within the decoder framework significantly contributes to enhancing the
overall performance of the model. After the feature fusion, they are subjected to up-sampling and subsequently
pass through an additional convolutional layer that consists of 64 numbers of filters, each with a size of 3 x 3.
Subsequently, contrast normalization and ReLLU activation are applied, resulting in the generation of 64 features.
The feature maps are subsequently merged with the fine-detailed features preserved from the initial block of the
encoder, and then the GAP layer is applied. Further enhancement is achieved by up-sampling the fused features
and projecting them into 128 feature maps by using a convolutional layer equipped with 128 numbers of filters,
each having a size of 3 x 3. These features significantly improve the representation of objects and background
pixels, thereby boosting the model’s performance. Finally, a sigmoid activation function and a convolutional
layer with a single 1 x 1 filter map the feature space precisely to the image space. When dealing with complex
video scenes, the application of a threshold value of 0.9 yields outstanding results in the creation of masks for
the related RGB (Red-Green-Blue) input image.

4 Results and Discussion

The presented framework runs on a Windows 10 OS, RAM of 8GB, using Python programming. The designed
approach includes training and testing on the high-performance NVIDIA Tesla T4 GPU, which is made available
through the Google Co-lab. The innovative technique utilizes the powerful TensorFlow backend alongside the
versatile Keras library. The efficacy of the introduced model is evaluated on demanding datasets characterized
by slow-moving dynamics [18, 19]. We have validated the efficacy of the proposed algorithm by conducting
a comprehensive analysis, comparing its results with those achieved by five existing techniques. Furthermore,
the developed model is also validated using a larger dataset, CDnet-2014 [47]. This evaluation is carried out
using both objective and subjective measures.
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4.1 Parameter configuration and Training specifics

The designed model is trained using a NVIDIA Tesla T4 GPU setup, batch size equal to 2 being utilized during
the training process. The decreased batch size in the developed model may induce a distinct regularization
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Table 1: Specification of the model’s parameters

Parameter Value
Learning rate 0.0001
Batch size 2
P 0.9
Maximum epoch 100
€ 1e-08

Table 2: Comparative analysis of AF in percentage with baseline methods on slow moving dataset

Methods
Sample Video |Hybrid algorithm | Fast valley | CMRM | EPMCB | MOD-CVS Proposed
[45] [26] [44] [46] (2]

Miss 90.77 96.94 90.16 | 97.14 99.11 98.91
Grandma 83.69 95.04 83.24 | 9531 98.73 98.78
Silent 91.72 95.55 90.83 | 95.77 97.97 98.42
Suzie 88.64 97.50 88.20 | 97.84 98.54 98.76
Akiyo 96.06 98.37 96.01 | 98.49 99.26 99.41
Mother daughter 90.38 96.24 89.21 | 97.09 99.25 99.20
Claire 96.65 98.50 97.03 | 98.88 98.68 98.90
Teleprompter 97.16 98.63 97.23 | 98.96 98.82 98.98
Salesman 74.42 92.77 69.56 | 93.79 97.94 98.13
Speech 58.99 94.46 57.63 | 96.34 98.83 99.15
Average 86.85 96.40 8591 | 96.96 98.71 98.86

effect, facilitating faster convergence. The model is trained with P pixels per frame over a sequence of frames
of N = 25. Moreover, we perform model training using the binary cross-entropy loss function. This loss
function helps us assess the classification of individual pixels by comparing the actual class labels with the
predicted ones.

To train the proposed methodology, we utilized the RMSProp optimizer with specific parameter values. With
p = 0.9 and € = 1le — 08, this optimizer offers faster convergence compared to conventional ones. We set the
initial learning rate at 0.0001. If the validation loss does not decrease over 5 consecutive epochs, we decrease
the learning rate by a factor of 10. We capped the maximum number of epochs at 100 during model training.
However, if the validation loss remains unchanged for 10 consecutive epochs, we activate an early stopping
mechanism. The details of the configuration of the parameters of the proposed model are presented in Table 1.

To mitigate biased learning weights caused by the sequential presentation of training frames, which can
introduce a high correlation between successive frames, we randomly selected training frames. We allocated
20% of the frames for validation and 80% for training. Additionally, to address imbalanced data classification,
we assigned higher weights to the foreground class and lower weights to the background class. For example,
the Akiyo dataset comprises 288 frames. Out of these, 25 frames are randomly selected, with 20% designated
for validation and 80% for training. Once training and validation are complete, the trained model is tested using
the entire set of 288 frames. We prioritized the foreground class by giving it higher weights while assigning
lower weights to the background class.

4.2 Subjective Measure

In Figure 4, we present a visual comparison of the outcomes obtained using conventional methods and the
developed algorithm. The original frames and their interrelated ground-truth frames are shown in Figures 4
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Table 3: Comparative analysis of AMCE with baseline methods on slow moving dataset

Methods
Sample Video |Hybrid algorithm | Fast valley | CMRM | EPMCB |[ MOD-CVS Proposed
[45] [26] [44] [46] (2]

Miss 7.96 2.88 3.04 1.75 0.83 1.02
Grandma 13.04 4.38 5.74 4.26 1.07 1.03
Silent 4.08 3.19 3.66 2.63 1.09 1.02
Suzie 5.68 2.92 4.47 2.92 1.78 1.98
Akiyo 2.81 1.40 2.02 1.22 0.54 0.50
Mother daughter 12.43 3.58 4.55 2.94 0.73 0.78
Claire 1.92 0.80 3.23 0.84 0.81 0.98
Teleprompter 2.56 0.91 3.47 0.71 0.69 0.83
Salesman 12.45 4.15 1222 | 294 0.90 0.90
Speech 2.68 2.24 4.12 2.14 0.67 0.48
Average 6.56 2.64 4.65 2.33 0.91 0.85

Table 4: Comparison of Average Precision (APre) in percentage with baseline methods on slow moving dataset

Methods
Sample Video |Hybrid algorithm | Fast valley | EPMCB
p y 4 Sg] 126] y (46] Proposed
Miss 92.46 94.02 94.33 98.89
Grandma 80.34 83.38 84.06 98.76
Silent 64.68 80.43 80.81 98.43
Suzie 95.75 97.86 97.87 98.76
Akiyo 88.99 93.87 93.88 99.42
Mother daughter 90.80 91.15 91.68 99.21
Claire 81.12 93.83 91.84 98.89
Teleprompter 83.16 89.18 92.30 98.97
Salesman 89.08 91.90 93.43 98.15
Speech 80.25 90.84 93.43 99.13
Average 84.66 90.68 91.56 98.86

(a) and (b) respectively. Figure 4 (c) displays the results obtained using the technique proposed by CMRM
[44], revealing instances where background pixels were mistakenly identified as objects pixels across different
slow-moving video scenes. The outcomes obtained using the approach developed by Hybrid algorithm [45] are
depicted in Figure 4 (d), highlighting a significant number of missed alarms. Figures 4 (e) and (f) showcase
the results achieved by the methodologies proposed by Fast valley [26] and EPMCB [46], respectively, both
exhibiting a considerable false negative rate. In contrast, Figure 4 (g) displays the outcomes obtained by the
designed model, demonstrating precise classification of background and foreground pixels. Moving on to
Figure 5, (a) and (b) respectively present the input frames and their interrelated ground-truth frames. Notably,
Figure 5 (g) clearly illustrates the impact of the developed method, achieving accurate shapes of moving objects
with significantly lower rates of false positives and false negatives compared to the methods CMRM [44],
Hybrid algorithm[45], Fast valley [26], and EPMCB [46]. Furthermore, the robustness of the designed model
is demonstrated using the benchmark CDnet-2014 dataset. As illustrated in Figure 7, the proposed method
is validated in different scenarios such as low light conditions, bad weather, object categories and in static
cameras. Figure 7 (c) clearly demonstrates that the proposed algorithm accurately detects the objects with
reduced false alarms in the challenging video scenes.
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Table 5: Comparison of Average Recall (ARe) in percentage with baseline methods on slow moving dataset

Methods
Sample Video |Hybrid algorithm | Fast valley | EPMCB
p y 4 5‘% 126] y 146] Proposed
Miss 92.45 93.12 94.31 98.92
Grandma 80.35 83.35 84.05 98.77
Silent 64.69 80.41 80.83 98.45
Suzie 95.74 97.85 97.88 98.77
Akiyo 89.00 93.86 94.81 99.40
Mother daughter 90.81 91.13 91.66 99.23
Claire 81.11 93.84 91.83 99.00
Teleprompter 89.05 83.17 92.28 98.96
Salesman 89.05 91.91 93.40 98.17
Speech 80.23 90.82 93.46 99.10
Average 85.24 89.94 91.45 98.87

Table 6: Comparative analysis of computational time in second with baseline methods on slow moving dataset

Methods
Sample Video |Hybrid algorithm | Fast valley | EPMCB
p y 4 Sg] 126] y (46] Proposed
Miss 29.74 8.74 10.20 7.02
Grandma 39.31 6.71 11.38 4.07
Silent 17.04 6.77 11.29 3.98
Suzie 107.85 13.29 15.41 9.34
Akiyo 82.22 15.69 24.51 7.74
Mother daughter 35.64 7.54 14.13 6.23
Claire 16.12 4.53 7.05 3.97
Teleprompter 33.45 13.37 21.39 10.96
Salesman 25.10 11.38 13.63 8.27
Speech 27.53 17.18 45.37 11.22
Average 41.39 10.52 17.43 7.28

4.3 Objective Measures

To gauge the efficacy of the designed approach, we conducted a thorough quantitative investigation and pitted it
against cutting-edge techniques specifically tailored for objects with slow movement. This allowed us to make a
comprehensive comparison and assess the performance of the presented methodology. Performance is assessed
using the AF and AMCE, as detailed in the Tables 2 and 3 respectively. Our analysis of these tables indicates
that the proposed technique outperformed existing methods including CMRM [44], Hybrid algorithm [45], Fast
valley [26], EPMCB [46], and MOD-CVS [2]. Specifically, the developed algorithm achieved higher accuracy
with an AF value of 98.86%, average precision of 98.86%, average recall of 98.87% and a lower AMCE
value of 0.85, indicating its superior performance over the existing methods. Further, the proposed approach
outperforms traditional methods in terms of precision and recall, resulting in fewer incorrect detections and a
higher rate of true object identification, as presented in Table 4 and Table 5 respectively. The computational
effectiveness of the formulated model is further substantiated in Table 6, which presents a comparative analysis
of execution times (in seconds) against existing approaches, confirming the designed model’s less execution
time which may be suitable for real-time applications. Furthermore, as shown in Table 7, the evaluation metrics
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Table 7: Comparative summary of average performance metrics across 10 slow-moving datasets and baseline
approaches

Approaches AF (%) | AMCE | APre (%) | ARe (%)
Hybrid algorithm | o os | ¢ 56 | 8466 | 8524
[45]
Fast valley 96.40 | 2.64 90.68 89.94
[26]
EPMCB
461 9696 | 233 91.56 91.45
MO][DZ']CVS 98.71 | 091 98.56 98.81
Proposed 98.86 0.85 98.86 98.87

Table 8: Ablation study on slow-moving datasets evaluating AF performance with and without GAP module

. Model without|Model with
Video Name GAP GAP
Miss 98.35 98.91
Grandma 98.32 98.78
Silent 99.07 98.42
Suzie 98.31 98.76
Akiyo 98.28 99.41
Mother daughter 98.13 99.20
Claire 98.19 98.90
Teleprompter 98.86 98.98
Salesman 97.32 98.13
Speech 98.02 99.15
Average 98.28 98.86

are summarized based on average performance across the ten slow-moving data sets analyzed. From Table 7 it
may be seen that the proposed algorithm obtained superior performance in AF, APre, and ARe, accompanied by
a lower AMCE compared to all the methods, ensuring a better detection of moving objects within the complex
scenes.

4.4 Ablation Study

In this section, an ablation study was conducted to assess the impact of various factors on the performance of
the proposed change detection system. An ablation analysis was conducted to validate the effectiveness of the
proposed method, comparing its performance with and without Global Average Pooling (GAP). From Table 8,
it has been observed that the proposed scheme, when using GAP, achieves a higher AF compared to when it is
not used. Hence, in the proposed algorithm, we incorporate GAP, which effectively retains spatial information
for improved feature representation. Additionally, the efficacy of the proposed method is demonstrated in Table
9. Table 9 shows that the proposed Feature Polling Framework attains better AF than without. Further, An
ablation study is conducted to examine how changes in the threshold value affect the AF metric. Table 10
indicates that the selected threshold of 0.9 results in improved performance against 0.7 and 0.8. As presented
in Table 11, the choice of sampling rate significantly affects the performance of the designed system. From
Table 11, it may be found that the sampling rates of 4, 8, and 16 consistently achieved higher AF values than
the alternative sampling rate combinations evaluated. Finally, an ablation study is conducted to determine
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Table 9: Ablation study on slow-moving datasets evaluating AF performance with and without FPF module

. Model withoutModel with
Video Name FPE FPE

Miss 97.92 98.91
Grandma 98.57 98.78
Silent 99.14 98.42
Suzie 97.43 98.76
Akiyo 98.71 99.41
Mother daughter| 98.53 99.20
Claire 98.81 98.90
Teleprompter 97.99 98.98
Salesman 98.01 98.13
Speech 98.77 99.15
Average 98.38 98.86

Table 10: Ablation study evaluating the impact of varying threshold values on AF (%) performance

Name Of the Video|Threshold value 0.7|Threshold value 0.8{Threshold value 0.9(Proposed)
Miss 96.82 95.34 98.91
Grandma 97.52 97.31 98.78
Silent 97.00 97.34 98.42
Suzie 96.41 97.43 98.76
Akiyo 95.67 94.66 99.41
Mother daughter 94.34 97.76 99.20
Claire 97.54 96.81 98.90
Teleprompter 96.84 96.91 98.98
Salesman 98.04 97.16 98.13
Speech 97.39 97.70 99.15
Average 96.75 96.82 98.86

the optimal parameter values for the developed model, focusing on their impact on the AF metric. For each
parameter, we varied its value while keeping others constant (at their proposed optimal settings) to observe
its effect. As shown in Table 12, the values of the optimized parameters consistently yield the highest AF
performance of 98.86% in all the configurations tested. This highlights the importance of precise parameter
adjustment to maximize the effectiveness of the designed model in challenging video scenes.

4.5 Imperceptible Video Configuration

In order to carry out the training and evaluation of the proposed model, we used distinct collections of videos
that depicted unfamiliar scenarios. To partition the videos into testing and training sets, we employed the leave-
one-video-out method. In this work, for an imperceptible video configuration, three videos are considered for
training and another three videos are considered for testing. The training videos in this configuration consist of
2,325 frames and testing videos have 9,701 frames. For training setup a total of 25 frames from the three videos
are selected randomly which includes various challenges such as illumination variation, dynamic background,
low frame rate and two different objects exhibiting motion at two different times. Similarly, the entire frames
of testing videos are considered for evaluation, which possess challenges like flashing light variation in the
background, and minor facial movements. Likewise, Teleprompter, Salesman, and Speech image sequences
are utilized for training, encompassing challenges such as the slow gestures, the subtle eye or head movements,
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Table 11: Ablation study evaluating the impact of varying Sampling Rate (SR) on AF (%) performance

Name Of the Video|SR (2, 4, 8)|SR (8, 16, 32)|SR (4, 8, 16) (Proposed)
Miss 95.78 95.65 98.91
Grandma 96.59 96.39 98.78
Silent 97.05 96.34 98.42
Suzie 94.23 93.43 98.76
Akiyo 93.85 94.45 99.41
Mother daughter 95.65 94.61 99.20
Claire 93.50 91.80 98.90
Teleprompter 95.84 95.08 98.98
Salesman 97.04 96.16 98.13
Speech 95.48 94.72 99.15
Average 96.75 94.86 98.86

Table 12: Ablation study evaluating impact of varying parameter values on AF value on slow moving dataset

Parameters Values AF
Learning rate | 0.00001, 0.001, 0.0001 |94.76, 95.01, 98.86
Batch size 1,3,2 95.21, 91.34, 98.86
) 0.7,0.8,0.9 96.75, 96.82, 98.86
Maximum epoch 50, 150, 100 92.61, 93.87, 98.86
€ le — 07, 1e — 09, 1e-08 | 91.21, 91.03, 98.86

and synchronization with audio. the model, which is subsequently tested with Miss and Suzie which includes
challenges like lack of significant motion variation between frames. This strategy allowed us to thoroughly
evaluate the effectiveness of the proposed model in identifying objects in unfamiliar scenarios. Table 13 reveals
that the proposed model achieved a superior average F-measure value in the imperceptible Video Configuration
scenario. A sample set of training, testing, and output videos is presented in Figure 6.

5 Conclusions

This work focuses on detecting local changes within video scenes using an encoder-decoder deep learning
framework. Specifically, the model targets the identification of slowly moving objects in challenging video
environments. To achieve precise feature extraction across various levels, our framework includes an encoder
that makes use of the VGG-16 DNN. The integration of transfer learning strategies within the encoder net-
work significantly amplifies the efficacy of the proposed system. In addition, the layers of the VGG-16 deep
neural network demonstrate exceptional proficiency in retaining critical features at various levels, including
low, mid, and high-level features, which plays a vital role in achieving precise object detection. The inclusion
of the details pooling mechanism between the encoder and decoder networks proves to be highly effective in
maintaining the integrity of objects with diverse scales in intricate video sequences. The algorithm we propose
utilizes the FPM model to facilitate the translation from a higher-dimensional feature space to a feature space
that encompasses multiple scales and dimensions. This transformation enables us to directly classify pixels
into foreground and background categories, with clear and well-defined decision boundaries. Furthermore, the
decoder network incorporated in the model we have developed consists of a sequence of convolutional lay-
ers, handily transforming the feature space into the visual domain of images. Overall, our approach facilitates
the preservation of objects at different scales and enables precise classification of foreground and background
pixels, which is crucial for accurate moving object detection.



66 Panigrahi et al. / Electronic Letters on Computer Vision and Image Analysis 24(2):49-69, 2025

Table 13: Average F-measure of the designed scheme in imperceptible video configuration on slow moving
object dataset

Name of the Video | Proposed scheme
Akiyo 0.87
Miss 0.78
Teleprompter 0.95
Suzie 0.94
Speech 0.79

By conducting both subjective and objective analyses, we have successfully validated the efficacy of the al-
gorithm we have developed. This assessment involved comparing our algorithm against four existing methods,
further affirming its effectiveness. The results demonstrate that our model excels in accurately preserving the
contours of moving objects while significantly reducing the occurrence of unwanted pores and holes, outper-
forming existing methods in this regard. The newly developed algorithm attained an AF value of 98.86%, APre
of 98.86%, ARe of 98.86% and an AMCE value of 0.85, showcasing its superior accuracy and performance
over existing methods. Moreover, the developed technique demonstrates satisfactory performance on unseen
video setups. Nevertheless, the proposed approach shows reduced performance when detecting small-sized
moving objects, and its effectiveness is particularly pronounced in scenes with dynamic background. Recog-
nizing the significance of the proposed approach, we plan to explore the integration of attention mechanisms
or multi-scale context aggregation modules, which can enhance feature representation for small and partially
visible objects. In addition, our goal is to develop a more robust hybridized deep neural architecture in future
research to further improve detection accuracy.
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