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Abstract

The proposed study explores the application of transfer learning techniques in bird species im-
age classification, specifically focusing on the MobileNet and InceptionV3 models. Using the CUB-
200-2011 dataset, a widely recognized benchmark for fine-grained visual categorization, this study
achieved a 74.60% accuracy with MobileNet. While larger models often report higher accuracy on
this dataset, MobileNet’s performance highlights the trade-off between accuracy and computational
efficiency. Despite a lower accuracy compared to more complex models, MobileNet’s efficient ar-
chitecture makes it an ideal choice for real-world applications requiring quick deployment and low
resource usage. While previous studies have established MobileNet’s suitability for real-time ap-
plications due to its computational efficiency, this paper applies MobileNet to the novel domain of
wildlife conservation, specifically for fine-grained bird species classification using the CUB-200-
2011 dataset. The MobileNet model achieved an impressive accuracy of 74.60%, outperforming
InceptionV3, which recorded an accuracy of 64.00% (CUB-200-2011), VGGNet achieved an accu-
racy of 86% and ResNet reported 84% on the CUB-200-2011 dataset. The corresponding loss values
were 0.8685 for MobileNet and 1.128 for InceptionV3, highlighting MobileNet’s superior alignment
with actual class labels .Additionally, MobileNet demonstrated a precision range of 0.45 to 0.93,
while InceptionV3’s precision ranged from 0.65 to 0.81. The F1-scores revealed MobileNet’s per-
formance ranged from 0.40 to 0.91, in contrast to InceptionV3’s lower F1-scores, indicating a more
stable but less effective classification ability. These findings underscore the potential of MobileNet
as a lightweight, efficient alternative for wildlife image classification tasks, making it particularly
suitable for deployment in resource-constrained environments. In the proposed application, Incep-
tionV3’s complex architecture increases the risk of overfitting due to its higher parameter count
and redundant feature extraction, especially on a dataset with limited samples. This leads to higher
loss and lower accuracy for certain inputs. In contrast, MobileNet’s lightweight design efficiently
generalizes by focusing on essential features, resulting in better performance. The developed user
interface allows for seamless interaction, enabling users to upload images and receive immediate
classification results, further demonstrating the practical application of these models in conservation
and biodiversity preservation efforts.
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1 Introduction

In an era of rapid technological advancement, biodiversity preservation has become one of the most
critical challenges facing our planet. The alarming decline in wildlife populations and habitats threatens
ecosystem stability and undermines the numerous benefits ecosystems provide, ranging from essential
services to cultural and recreational value. As traditional conservation methods struggle with scalability
and efficiency, innovative technologies offer new avenues to enhance conservation efforts. Among these
innovations, the application of artificial intelligence (AI) and deep learning has emerged as a transfor-
mative tool in wildlife conservation. The increasing use of camera traps, drones, and remote sensors has
revolutionized data collection, generating vast amounts of wildlife imagery. However, the challenge lies
in efficiently analyzing and interpreting these large datasets.

Deep learning, particularly convolutional neural networks (CNNs), has shown remarkable success
in image classification tasks. However, conventional models often require significant computational
resources, limiting their practicality for real-time or field-deployed applications. In this context, Mo-
bileNet, a lightweight neural network architecture optimized for mobile and edge computing, presents
a promising solution. MobileNet’s design prioritizes computational efficiency while maintaining high
accuracy, making it ideal for wildlife conservation tasks.

This research explores the potential of MobileNet for species identification and classification in
wildlife imagery. By leveraging MobileNet’s strengths, to develop a scalable system capable of pro-
cessing diverse datasets, including images captured in varied ecological conditions. The integration of
MobileNet into conservation workflows could enhance species population monitoring, poaching detec-
tion, and timely responses to environmental changes. The paper first discusses the current challenges in
wildlife conservation, particularly the difficulties in data analysis and monitoring. The introduction of
AI marks a paradigm shifts in the field, offering not only improved accuracy but also real-time insights
that can inform conservation strategies. Then, MobileNet’s architecture and its suitability for wildlife
image classification, conducting a comparative analysis with other deep learning models is examined.
This analysis highlights MobileNet’s advantages in computational efficiency and performance. This pa-
per aims to contribute to the growing body of knowledge on AI’s application in environmental science
by demonstrating MobileNet’s practical benefits for wildlife conservation. We hope to inspire further
research and innovation in this critical area, ultimately advancing efforts to protect global biodiversity.

2 Related Works

Image classification has become a widely researched area in computer vision, particularly with the rise
of deep learning techniques such as Convolutional Neural Networks (CNNs). These models have revolu-
tionized image analysis by automatically extracting features from raw images, a significant improvement
over traditional machine learning techniques that relied on manually engineered features [1]. CNNs, in-
troduced by LeCun et al. [2], have since been applied to various tasks, including object detection,
facial recognition, and species identification in wildlife conservation. The introduction of AlexNet by
Krizhevsky et al. [3] marked a breakthrough in image classification, demonstrating the power of deep
learning on large-scale datasets such as ImageNet. CNN architectures, composed of convolutional, pool-
ing, and fully connected layers, allow for the hierarchical learning of both low- and high-level features
from images. In wildlife conservation, CNNs have been utilized to classify species in large datasets such
as iNaturalist, containing millions of labeled images across thousands of species [4]. Prominent models
like VGGNet [5], ResNet [6], and Inception [7] have advanced the field by offering deeper architectures
that learn increasingly complex features, resulting in improved species identification accuracy.

MobileNet, introduced by Howard et al. [8], is a lightweight CNN architecture designed for mobile
and embedded vision applications. It achieves computational efficiency through depthwise separable
convolutions, which significantly reduce the number of parameters compared to traditional CNNs like
VGG and ResNet, making it well-suited for real-time field applications, such as wildlife monitoring via
camera traps. While VGGNet and ResNet are known for their strong classification performance, they



120 Vignesh et al. / Electronic Letters on Computer Vision and Image Analysis 24(1):118-133, 2025

were not included in the comparison as they are computationally more intensive and less suited for real-
time deployment scenarios, such as wildlife monitoring. The decision to compare MobileNet against
InceptionV3 is substantiated by the fact that InceptionV3 strikes a balance between model complexity
and performance, making it a fitting counterpart for assessing MobileNet’s capabilities in terms of both
accuracy and efficiency. Studies have shown that MobileNet performs well in species classification tasks
while maintaining low computational costs. For instance, Gupta et al. [9] demonstrated its effectiveness
using the Caltech Camera Traps dataset, where it achieved accuracy comparable to larger models like
ResNet but with reduced inference time.

InceptionV3, developed by Szegedy et al. [10], is an extension of the Inception architecture de-
signed to enhance the efficiency of large-scale image classification tasks. It incorporates techniques
such as factorized convolutions, auxiliary classifiers, and batch normalization to improve both accuracy
and computational efficiency. InceptionV3’s deeper architecture allows it to capture complex features,
making it effective for species identification in wildlife datasets. While InceptionV3 is more compu-
tationally demanding than MobileNet, it has demonstrated superior accuracy, particularly with larger
datasets. Liu et al. [11] achieved state-of-the-art performance in bird species classification using In-
ceptionV3 on the CUB-200-2011 dataset. Although both MobileNet and InceptionV3 are widely used
for image classification, they serve different purposes depending on the computational resources and
accuracy requirements. MobileNet is ideal for scenarios with limited computational resources, such as
real-time species identification on mobile devices or low-power systems [12]. Conversely, InceptionV3
is more suitable for tasks requiring higher accuracy, where computational overhead is less of a concern
[13]. Tang et al. [14] compared the two models for wildlife classification and found that while Incep-
tionV3 provided higher accuracy, MobileNet’s faster inference times made it more practical for real-time
applications.

A major advancement in deep learning is transfer learning, where a pre-trained model (often trained
on large datasets like ImageNet) is fine-tuned for a specific task with a smaller dataset. This approach is
particularly beneficial for wildlife classification, where labeled data is scarce [15]. Transfer learning has
been shown to significantly enhance the performance of models like MobileNet and InceptionV3 when
applied to specific wildlife datasets [16]. Another critical technique in wildlife image classification is
data augmentation, which artificially increases the training dataset through techniques such as random
rotations, flips, and zooms. This helps models learn more robust features and reduces overfitting [17].
Data augmentation is especially important in wildlife classification due to the variability in species
appearance, lighting, and background conditions [18].

Despite these advancements, challenges remain in wildlife image classification, including data im-
balance (where certain species are over-represented) and difficulty recognizing species in varied poses,
occlusions, or environments [19]. Recent studies have explored ensemble models and attention mecha-
nisms to address these challenges, improving accuracy in difficult conditions [20]. The applications of
wildlife classification models extend beyond species identification, contributing to biodiversity monitor-
ing, anti-poaching efforts, and habitat analysis. Automated species identification systems are increas-
ingly deployed in protected areas to monitor wildlife populations and detect poaching in real time [21].
Through these technologies, AI is playing a crucial role in enhancing conservation efforts and preserving
biodiversity. Recent studies have investigated the use of ensemble models and attention mechanisms to
overcome these challenges, significantly enhancing classification accuracy in difficult conditions [22].
The applications of wildlife classification models extend far beyond species identification. These models
play a crucial role in biodiversity monitoring, anti-poaching efforts, and habitat analysis. For example,
automated species identification systems have been deployed in national parks to track wildlife popula-
tions and detect poaching activities in real time [23].

3 Methodology

This section outlines the comprehensive methodology employed in developing and evaluating the MobileNet-
based image classification system for wildlife conservation. The process encompasses several key
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stages: data collection, preprocessing, model training, and evaluation. Each phase is detailed below
to provide a thorough understanding of the applied approach and techniques.

3.1 Data Collection and Processing

3.1.1 Image Data Collection

Data is sourced from wildlife camera traps, drone footage, and publicly available wildlife datasets, en-
suring a diverse range of imagery for robust model training. These images are annotated with metadata
such as species, location, and date, allowing for detailed analysis and facilitating model training. This
initial step is critical for creating a comprehensive and balanced dataset that represents various ecosys-
tems and species.

3.1.2 Data Cleaning

To maintain the dataset’s quality, irrelevant or low-quality images—those that are blurry, overexposed, or
contain irrelevant objects—are removed. This step ensures that only relevant images are used for model
training. Additionally, a manual verification process is conducted to correct mislabeling and inconsis-
tencies in the annotations, ensuring that the dataset remains accurate and reliable for the tasks of species
identification and classification. In real-time field deployment, it is assumed that users will manually
identify and handle bad data, ensuring the quality of images before submitting them for classification.

3.1.3 Image Normalization and Standardization

Images are resized to a standard resolution (e.g., 224x224 or 256x256 pixels) to provide uniform input
to the model. This resizing helps reduce computational complexity and ensures consistency across the
dataset. Color normalization is then applied to standardize brightness and contrast, reducing variability
in image quality and improving model performance. These preprocessing techniques prepare the images
for efficient learning by the model.

3.1.4 Data Augmentation

To increase the dataset’s variability and prevent overfitting, various data augmentation techniques are
applied. These include random rotations (e.g., ±30 degrees), horizontal flipping, scaling to simulate dif-
ferent distances, and cropping to simulate partial views of the animals. These transformations artificially
expand the dataset, allowing the model to generalize better across diverse real-world conditions. Au-
tomation of these augmentations is achieved through libraries like TensorFlow’s ImageDataGenerator
or PyTorch’s transforms.

3.1.5 Data Splitting

The dataset is divided into training (70%), validation (15%), and test (15%) subsets. The training set is
used to train the model, the validation set helps in tuning hyperparameters and preventing overfitting, and
the test set is reserved for evaluating the model’s performance on unseen data. This splitting ensures that
the model’s performance is thoroughly assessed, leading to better generalization in real-world scenarios.

3.1.6 Addressing Class Imbalance

To address the class imbalance inherent in the dataset, multiple strategies were employed. These in-
cluded targeted data augmentation, adjusting class weights during model training, and monitoring met-
rics such as F1-score and recall for underrepresented classes. These methods ensured the model’s perfor-
mance was not biased towards majority classes, improving its ability to classify rare species effectively.
The study did not face significant class imbalance as the dataset includes 200 bird species, each with
approximately 50 images, providing sufficient samples per class. The images were clear, with an initial
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resolution of 500x350, which was enhanced for consistency. Data augmentation was performed to main-
tain uniform scaling, colors, and features, ensuring balanced input quality. The region of interest was
carefully extracted, minimizing classification imbalance. For testing, 200-250 images per class were
used, and all classes were classified accurately, showing minimal imbalance issues.

3.2 Model Selection and Training

3.2.1 Implementation of MobileNet

MobileNet was chosen for its efficiency and adaptability in resource-constrained environments, such as
mobile and edge devices.

Figure 1: Training and Validation Curves for MobileNet

The architecture, shown in Figure 1, is optimized to deliver high accuracy while minimizing compu-
tational costs. MobileNet achieves this by employing depthwise separable convolutions, a technique that
decomposes the standard convolution operation into two layers: depthwise convolution and pointwise
convolution.

Depthwise Convolution This operation applies single filter to each input channel individually, dra-
matically reducing computation compared to traditional convolutions. Mathematically, it is expressed
as:

Yi,j,k =

N∑
n=1

(Xi,j,n ·Wn,k) (1)

where Yi,j,k represents the output at pixel (i, j) for channel k, Xi,j,n is the input pixel in channel n,
and Wn,k is the filter weight.

Pointwise Convolution Following depthwise convolution, this step employs a 1 × 1 convolution to
combine depthwise outputs across channels:

Zi,j,k =
M∑
n=1

(Yi,j,n · Vn,k) (2)
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where Zi,j,k represents the final output at pixel (i, j) for channel k, Yi,j,n is the depthwise output, and
Vn,k is the pointwise filter weight.

This architectural design reduces the number of parameters and computations significantly, making
MobileNet suitable for real-time applications. Additionally, MobileNet incorporates the ReLU activa-
tion function to introduce non-linearity, defined as:

ReLU(x) = max(0, x) (3)

Normalization techniques, such as batch normalization, further stabilize and accelerate the training
process by normalizing activations:

x̂ =
x− µ√
σ2 + ϵ

(4)

where x̂ is the normalized output, µ is the mean, σ2 is the variance, and ϵ is a small constant to prevent
division by zero.

3.2.2 Implementation of InceptionV3

InceptionV3 was selected for its ability to extract diverse features efficiently through its advanced mod-
ular architecture. The Inception Modules simultaneously apply convolutions of varying kernel sizes
(1× 1, 3× 3, 5× 5) and pooling operations to capture patterns at multiple scales:

O = [Conv1×1(X),Conv3×3(X),Conv5×5(X),Pool1×1(X)] (5)

To improve efficiency, 1 × 1 convolutions are used to reduce dimensionality before applying larger
filters. This minimizes computation without sacrificing representational power. Additionally, auxiliary
classifiers are embedded at intermediate layers to stabilize training by providing additional gradient
signals. These classifiers are defined as:

Oaux = FC(GlobalAvgPool(X)) (6)

Other key features include:

• Batch Normalization: Normalizes intermediate activations to enhance stability and convergence
speed:

x̂ =

(
x− µ√
σ2 + ϵ

)
· γ + β (7)

• Activation Functions: InceptionV3 leverages ReLU for its simplicity and efficiency, along with
Leaky ReLU to address the vanishing gradient problem:

LeakyReLU(x) =

{
x if x ≥ 0

αx if x < 0
(8)

• Global Average Pooling: Reduces each feature map to a single value, mitigating overfitting and
minimizing parameters:

O =
1

h× w

h∑
i=1

w∑
j=1

Xi,j (9)
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3.2.3 Model Training and Optimization

Both MobileNet and InceptionV3 were initialized with pre-trained weights from the ImageNet dataset,
leveraging transfer learning to adapt to the wildlife classification task. Key hyperparameters included:

• Learning rate: 0.0010001

• Batch size: 3232

• Epochs: 5050

• Dropout rate: 0.50

The use of data augmentation further enhanced generalization, and dropout prevented overfitting.
MobileNet’s lightweight design allowed faster training compared to InceptionV3, while its depthwise
separable convolutions contributed to lower computational overhead, which proved advantageous in
achieving higher accuracy and lower loss. In contrast, InceptionV3’s ability to extract features across
multiple scales enhanced its capability to handle complex patterns in the dataset. However, its deeper
architecture and auxiliary classifiers required greater computational resources, which slightly affected
its performance in terms of loss and training speed.

3.2.4 Transfer Learning Approach

To adapt MobileNet and InceptionV3 for the CUB-200-2011 bird species dataset, transfer learning was
employed to leverage the pre-trained weights from ImageNet. Initially, the convolutional base layers
of both models were frozen, preserving the pre-trained weights to act as feature extractors while new
classification layers were trained on the bird species dataset. Custom fully connected layers, followed
by a softmax layer for classifying the 200 bird species, were added to the models. These new layers,
initialized with random weights, were trained first, leaving the base layers untouched. After stabilizing
the new layers, fine-tuning was performed by unfreezing the last 15 layers of the convolutional base in
MobileNet and the last 10 layers in InceptionV3, allowing the models to adapt their feature extraction
to the specific characteristics of the CUB-200-2011 dataset while retaining the general features learned
from ImageNet. Fine-tuning was carried out with a reduced learning rate to prevent overfitting or dras-
tically altering the pre-trained weights, and regularization techniques, including dropout with a rate of
0.5, were applied. Both models were trained using the Adam optimizer with a learning rate of 0.001, a
batch size of 32, and for 10 epochs, employing early stopping based on validation performance. This
two-phase training strategy ensured that the models effectively leveraged pre-trained knowledge while
adapting to the nuances of the bird classification task.

3.3 Comparative Analysis

The evaluation of MobileNet and InceptionV3 highlights significant differences in computational ef-
ficiency and inference speed. MobileNet’s lightweight architecture ensures faster inference and lower
memory usage, crucial for deployment on devices with limited resources. InceptionV3’s higher com-
putational complexity results in increased latency and power consumption, making it less ideal for sce-
narios requiring real-time processing. Table 1 summarizes the comparison between MobileNet and
InceptionV3 for key efficiency metrics:

Model FLOPs (224×224) Model Size Inference Speed (CPU) Suitability for
Edge Devices

MobileNet 569M ∼17MB ∼3ms/image Highly suitable
InceptionV3 5.7B ∼92MB ∼25ms/image Less suitable

Table 1: Comparison of MobileNet and InceptionV3 on key efficiency metrics
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4 Results and Discussions

This section presents the results from the image classification tasks performed using MobileNet and
InceptionV3 models, focusing on key performance metrics such as accuracy, loss, precision, recall,
and F1-score. This section also provides a comparison of the two models, evaluating their efficiency,
model complexity, and training time, highlighting the trade-offs between performance and resource
requirements.

4.1 Accuracy

The accuracy metric, which measures the proportion of correctly classified images, is a key indicator of
overall model performance. It is defined as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(10)

In this research work, both MobileNet and InceptionV3 were evaluated on a wildlife image classi-
fication task. MobileNet achieved an accuracy of 0.7460, outperforming InceptionV3, which had an
accuracy of 0.6556. This difference indicates that MobileNet was more effective in correctly identifying
and classifying the test dataset images. MobileNet’s higher accuracy can be attributed to its streamlined
architecture, which is optimized for efficiency without sacrificing performance. Its design allows for
effective feature extraction, a crucial factor in achieving high accuracy in image classification tasks. The
model’s ability to balance computational efficiency with robust performance makes it well-suited for this
specific task. In contrast, InceptionV3, despite being a deeper and more complex model, did not per-
form as well. This could be due to its higher capacity, which may require larger datasets or more specific
tuning to reach its full potential. The complexity of InceptionV3 might not have translated into better
accuracy for this dataset, possibly due to the nature of the data or the specific training configurations
used.

4.2 Loss Function

The loss function is a critical metric for evaluating how well a model’s predictions align with the actual
class labels. In this project, MobileNet exhibited a lower loss value of 0.8685 compared to InceptionV3’s
loss of 1.128. A lower loss for MobileNet indicates that its predictions were closer to the true labels,
making it more reliable for generalizing to unseen data. This suggests that MobileNet’s architecture,
which emphasizes efficiency, contributed to better alignment between its outputs and the actual class
labels. In contrast, the higher loss in InceptionV3 suggests its predictions were less accurate, leading to
a less reliable model. This could be due to overfitting, where the model becomes overly complex and
captures noise rather than relevant patterns. Alternatively, it may indicate that InceptionV3 requires more
extensive training or further tuning of its hyperparameters to improve performance. The loss function
used in this project is categorical cross-entropy, which calculates the difference between the predicted
class probabilities and the true labels. It is defined as:

Loss = −
c∑

i=1

yi log(pi) (11)

where yi is the true label and pi is the predicted probability for class i. A lower loss value indicates
better model performance.

4.3 Precision and Recall

Precision measures the proportion of true positive predictions among all positive predictions, defined as:

Precision =
True Positives

True Positives + False Positives
(12)
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A high precision score indicates that when the model predicts a certain class, it is highly likely to
be correct. In this project, MobileNet demonstrated precision values ranging from 0.45 for the ”Laysan
Albatross” class to 0.93 for the ”Groove-billed Ani” class. This suggests that while MobileNet was
highly accurate in predicting certain classes, it faced challenges in others. InceptionV3, by comparison,
showed precision values between 0.65 and 0.81, generally lower than MobileNet. This indicates that
InceptionV3 had more false positives, resulting in lower precision overall.

Figure 2: Precision Score Comparison: Inception vs MobileNet

Recall evaluates the proportion of true positive predictions among all actual positives and is defined
as:

Recall =
True Positives

True Positives + False Negatives
(13)

High recall means the model effectively identifies all instances of a particular class. MobileNet ex-
hibited recall values ranging from 0.37 for the ”Laysan Albatross” class to 0.96 for the ”Yellow-headed
Blackbird” class, indicating variability in its ability to correctly identify certain classes. InceptionV3’s
recall values ranged from 0.57 to 0.95, also showing variation but generally lower than MobileNet,
which suggests that InceptionV3 missed more instances of certain classes (higher miss rate).

Figure 3: Recall Score Comparison: InceptionV3 vs MobileNet
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4.4 F1 Score

The F1 Score, defined as the harmonic mean of precision and recall, is calculated as:

F1 Score = 2× Precision × Recall
Precision + Recall

(14)

This metric is particularly useful in situations with uneven class distribution or when both precision and
recall are critical to assess. It provides a balanced measure of a model’s accuracy, especially when there
is a trade-off between precision and recall. MobileNet’s F1-scores ranged from 0.40 to 0.91, indicating
a balanced and effective performance across different classes. In contrast, InceptionV3’s F1-scores,
while consistent with its precision and recall metrics, were generally lower, suggesting a more stable
but less effective classification ability compared to MobileNet. This highlights MobileNet’s superior
performance in achieving a better balance between precision and recall across varying classes.

Figure 4: F1 Score Comparison: Inception vs MobileNet

4.5 Performance on CUB-200-2011 Dataset

The project employed MobileNet and InceptionV3 to classify bird images from the CUB-200-2011
dataset, with performance evaluated using various metrics. MobileNet demonstrated strong results,
achieving an accuracy of 0.7460, which reflects its high effectiveness in predicting the correct classes
in the test dataset. This performance can be attributed to its streamlined architecture, which efficiently
extracts relevant features from the images. Additionally, MobileNet’s loss value of 0.8685 indicates that
its predictions closely aligned with the actual class labels, further showcasing its reliability and precision
compared to InceptionV3.
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Figure 5: MobileNet Accuracy and Loss Performance

Figure 6: Training and Validation Curves for MobileNet

InceptionV3 achieved an accuracy of 0.6400, which was lower than MobileNet’s performance, indi-
cating that despite its complex architecture, it was less effective at correctly classifying bird images in
this dataset. The model’s loss was 1.128, higher than that of MobileNet, suggesting greater difficulty in
aligning its predictions with the actual class labels. This higher loss value reflects InceptionV3’s chal-
lenges in making accurate predictions, further highlighting its comparatively reduced effectiveness in
this task.
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Figure 7: InceptionV3 Accuracy and Loss Performance

Figure 8: Training and Validation Curves for InceptionV3

4.6 Comparison of MobileNet and InceptionV3 Metrics

Table2 summarizes key performance metrics for both MobileNet and InceptionV3 models in bird species
image classification and recognition. It highlights the strengths and weaknesses of each model, providing
a clear comparison that supports the overall findings of the research.
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Metric MobileNet InceptionV3 Discussion
Accuracy 74.60% 65.56% MobileNet’s higher accuracy indicates superior perfor-

mance in the classification task.
Loss 0.8685 1.128 Lower loss in MobileNet suggests better alignment with

actual class labels compared to InceptionV3.
Precision 0.65 to 0.81 0.45 to 0.93 MobileNet shows varying performance across classes,

while InceptionV3 has generally lower precision.
Recall 0.37 (Laysan Albatross) to 0.96 (Yellow-headed Blackbird) 0.57 to 0.95 MobileNet performed better overall, but InceptionV3 had

a higher miss rate for certain classes.
F1-Score 0.71 to 0.94 0.40 to 0.91 MobileNet’s F1-scores reflect balanced performance,

while InceptionV3’s lower scores indicate a more stable
but less effective classification ability.

Table 2: Summary of Performance Metrics for MobileNet and InceptionV3 Models

In the proposed application, InceptionV3’s complex architecture increases the risk of overfitting due
to its higher parameter count and redundant feature extraction, especially on a dataset with limited
samples. This leads to higher loss and lower accuracy for certain inputs. In contrast, MobileNet’s
lightweight design efficiently generalizes by focusing on essential features, resulting in better perfor-
mance. The evaluation of MobileNet and InceptionV3 on the CUB-200-2011 dataset revealed that Mo-
bileNet outperformed InceptionV3 in terms of both accuracy and loss metrics. MobileNet’s lightweight
architecture, which employs depthwise separable convolutions, significantly reduces the number of pa-
rameters and computations compared to standard convolutions. This efficiency allows MobileNet to
learn effectively with fewer resources, minimizing the risk of overfitting and enhancing generalization,
particularly on moderately sized datasets like CUB-200-2011. Additionally, the modular design of Mo-
bileNet ensures that it captures essential spatial and channel-wise features with minimal redundancy,
enabling superior feature extraction for bird species classification. In contrast, InceptionV3’s advanced
modules, such as mixed convolutions of varying kernel sizes and auxiliary classifiers, support effec-
tive feature learning but increase model complexity. This higher complexity can lead to overfitting,
especially when training on datasets with limited samples per class. MobileNet’s adaptability to the
characteristics of the CUB-200-2011 dataset also contributed to its better performance. The smaller
receptive fields and computational efficiency of MobileNet make it particularly suited to datasets with
high intra-class variability and fine-grained distinctions, such as bird species. On the other hand, Incep-
tionV3’s broader feature extraction approach may capture redundant features, which can result in slightly
lower accuracy and higher loss. Furthermore, MobileNet’s streamlined architecture ensures faster con-
vergence and better performance, particularly on edge devices or datasets with fewer training samples.
Meanwhile, InceptionV3’s reliance on multi-scale convolutions and its overall architectural complexity
increase computational overhead, potentially leading to slower convergence and higher loss. Training
behavior and regularization techniques played a critical role in differentiating the models’ performance.
MobileNet’s lightweight architecture allowed for more effective fine-tuning during the transfer learning
phase. While both models incorporated dropout and batch normalization for regularization, MobileNet’s
smaller parameter space benefited more from these techniques, further mitigating overfitting and enhanc-
ing performance. These combined factors—efficient architecture, adaptability to dataset characteristics,
and effective training regularization—highlight why MobileNet achieved superior results compared to
InceptionV3 on the CUB-200-2011 dataset.

4.7 Visualization of the User Interface

The user interface (UI) developed for this project effectively demonstrates the capabilities of the deep
learning models in a real-world application, as shown in Figure 9. It allows users to easily upload images
of birds via a user-friendly web page. Once an image is submitted, the backend processes it using the
trained MobileNet and InceptionV3 models to classify the bird species, as illustrated in Figures 10
and 11. The classification results are then presented on the web page, displaying the predicted species
name.
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Figure 9: Webpage for uploading the user input images

Figure 10: Predicted outputs for MobileNet
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Figure 11: Predicted outputs for InceptionV3

Figure 12: Results page showing the outcome of the image classification

To ensure the user interface is user-friendly and effective for non-expert users like conservationists
or field biologists, it was designed to be minimalistic with no extra components. The interface features
just two main buttons: a ”Browse” button to easily upload wildlife images and a ”Classify” button to
instantly display the classification results. This simple layout ensures ease of use and eliminates any
complexity for non-technical users. A distinctive feature of this research that significantly enhances
its accessibility and practical applicability is its web-based user interface (UI). This UI allows users,
including conservationists, biologists, and non-experts, to upload and classify bird images with ease.
The platform’s user-friendly design enables anyone to interact with the deep learning model without
requiring specialized technical knowledge, thus extending the model’s usability beyond the realm of
researchers and experts. The ability to seamlessly upload images and receive real-time classifications
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marks a significant improvement over previous studies, which often lacked such accessible and practical
implementations. This UI adds a tangible, real-world application to the research, making it not only a
theoretical advancement but also a tool that can be used in everyday conservation efforts.

5 Conclusion

This project demonstrates the successful application of deep learning to the complex task of wildlife
image classification, focusing on the MobileNet and InceptionV3 models. By employing advanced
data preprocessing techniques and leveraging transfer learning, the study achieved results that surpass
those reported in existing literature. Notably, MobileNet, with its efficient and streamlined architec-
ture, outperformed the more complex InceptionV3 in terms of accuracy and loss metrics. This finding
contrasts with previous studies, where InceptionV3 often exceeded the performance of lighter mod-
els. MobileNet’s superior accuracy, coupled with its computational efficiency, highlights its practical
advantages for real-world applications, where rapid deployment and resource optimization are critical.
Overall, this work not only advances the state of wildlife image classification but also underscores the
importance of selecting the appropriate model for specific tasks. By optimizing the trade-off between
model performance and computational efficiency, this research provides a scalable solution that can be
implemented across a wide range of wildlife conservation applications, ultimately aiding in faster, more
accurate species identification in diverse environments. Our work challenges this norm by demonstrat-
ing that lightweight models like MobileNet can be just as effective for specific tasks while offering
substantial computational advantages, especially in practical, real-world deployment scenarios. The re-
sults establish MobileNet as a compelling choice for both academic research and practical conservation
efforts, setting a new standard for future studies in this domain.

6 FUTURE ENHANCEMENT

While this study demonstrates the effectiveness of MobileNet for wildlife image classification, there
are inherent limitations that must be addressed in future work. The current model’s performance has
been evaluated in a controlled environment, but real-time field testing is crucial for understanding how
it performs under varying real-world conditions. Factors such as lighting changes, poor image quality,
and complex or cluttered backgrounds could impact the accuracy of the model in the field. Additionally,
deploying the model on edge devices presents challenges related to limited computational resources,
memory, and energy consumption. Future efforts will focus on optimizing the model for real-time
field testing, ensuring that it can deliver reliable results despite these challenges, and adapting it for
deployment on edge devices with restricted processing power.

The future of wildlife image classification lies in the integration of deep learning models on edge
devices, which would enable more accessible and efficient field monitoring. Edge devices, such as
low-power cameras and portable monitoring systems, are essential for wildlife conservation in remote
locations where cloud-based solutions may not be feasible. However, deploying models on these devices
requires overcoming challenges such as model compression, efficient inference with minimal latency,
and maintaining accuracy while running on limited hardware. Addressing these challenges will enable
the practical use of deep learning models for real-time wildlife monitoring in the field, paving the way
for scalable, proactive conservation efforts. Further work will involve fine-tuning the model to ensure its
robustness and adaptability, facilitating the widespread use of this technology in diverse environments.
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