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Abstract

The agriculture industry and food security require accurate and timely identification of plant leaf dis-
eases. This research presents a unique hybrid deep learning model that incorporates Depthwise Separable
VGG19 with Capsule Networks (VGG19-CapsNet) and ensemble activation functions of Leaky ReLU and
GELU to classify diseases on the bell pepper and grape leaves. The model employs depthwise separable
convolutions to decrease the workload and maintain spatial hierarchies, while Capsule layers augment spa-
tial perception and resilience to intra-class variability. A modified Adamax optimizer is utilized to enhance
convergence stability. The framework is trained and evaluated on a hybrid dataset consisting of Planti-
fyDr, PlantVillage, Sravanneeli, and a custom dataset, along with the other datasets, which were boosted
using various augmentation strategies. The performance is remarkable in validation process; for bell pepper,
98.11% accuracy, 98.63% precision, 97.32% recall, 98.49% specificity, and 98.18% F1 Score is achieved.
For grape leaves, 98.44% accuracy, 98.46% precision, 98.20% recall, 97.40% specificity, and 98.46% F1
Score is achieved. This supports real-time use as edge solutions in agricultural settings. The architecture
has a significantly higher accuracy and generalizability, greater computational efficiency, and lower overall
system strain than the other CNN and hybrid models.

Key Words: Computer Vision, Image Analysis, Pattern Recognition Image segmentation, 3D Reconstruction,
Active Vision, Tracking, Video and Image Sequence Analysis, LATEX.

1 Introduction

The field of plant pathology fundamentally changed with the application of deep learning (DL), and artificial
intelligence (AI) to automate the task of leaf disease classification during the preliminary stages of precision
agriculture. This research aims to enhance the existing DL framework to achieve higher accuracy in classifying
diseases in bell pepper and grape leaves, which pose significant risks to sustainable crop and economic health.
Some of the major challenges of the existing model include high computational cost, loss of spatial hierarchical
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information, overfitting of sparse datasets, lack of robust feature representation, and difficulty in handling intra-
class variations [1, 2]. Traditional convolution neural networks (CNNs), mainly deep convolutional networks
(DCNN), have vast numbers of parameters, thereby causing heavy computational complexity and reduced
processing speed. This cannot be applied in real-time in agricultural environments, and the processing is
slow because of resource constraints on the processing devices. Standard CNNs cannot retain detailed spatial
relations between features, especially when applying the model to image data containing fine details in regions
such as disease-infected leaf areas. Therefore, they may misclassify subtle variations, as in distinguishing
between similar diseases. The leaf disease datasets are usually small in this case, specifically for plant details
like bell pepper and grape. Existing methods rely heavily on raw convolutional filters, which may not effectively
capture complex feature hierarchies. Disease symptoms can vary widely, and some existing systems fail to
generalise well to unseen samples due to inadequate feature representations. Leaf diseases can present diverse
symptoms even within the intra-class variability, and current approaches struggle to generalise across such
variations effectively, leading to lower classification accuracy. This research addresses the challenges farmers
and agricultural industries face in effective disease management strategies in modern agriculture. Incorporating
deep learning and computer vision (CV) technologies has greatly enhanced the identification of plant diseases.
VGG19captures multi-level features through depth-wise separable convolutions (DWSC). Nevertheless, the
current models fail to adapt to the distinguishing features of diseases for bell peppers and grapes. Different types
of activation functions, for instance, have a profound influence on model performance. Yet, the conjunction of
Leaky ReLU and GELU in plant pathology is completely undertheorised. This VGG19 framework harnesses
ensemble activation to improve feature extraction by enabling the exploitation of both local and global disease
patterns.

Figure 1: The architecture of Depth-wise Separable VGG19 and Capsule Network is deployed in a 128-core
NVIDIA Jetson Nano single-board GPU computer.

Figure 1 illustrates the workflow of the plant leaf disease classification framework designed specifically for
bell pepper and grape leaves. It starts with merging datasets acquired from various sources PlantifyDr [3],
PlantVillage [4], Sravanneeli [5], and a custom one. From these datasets, a set of image preprocessing pipelines
consisting of labelling, resizing, enhancement, segmentation, and augmentation is performed. These steps help
in uniformity in the input dimensions and improve image quality, capturing greater diversity for the model to
generalise better. After the preprocessing step, the data is split into three chunks: training data 70%, validation
data 20%, and testing data 10%. The modified VGG19-CapsuleNet architecture model is provided with the
split and processed data beforehand. The architecture merges DWSC with capsule layers; spatial hierarchies
are captured while neutralising associated work needed, streamlining the model.

Following the construction of the model, the process continues with feature selection, model selection, and
evaluation. These processes guarantee that the most pertinent attributes and classification features are retained.
At the same time, the model that meets the performance requirements is selected based on the metrics defined
previously, which include calculating accuracy, precision, recall, and F1-score. The model is then deployed into
production for classification, with the final result being correctly identified disease labels for the grape leaves
and bell pepper leaves.
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Capsules preserve spatial hierarchies and inter-relationships among features, which remains particularly use-
ful in leaf disease classification scenarios, as subtle spatial patterns define disease characteristics. Coupling
Capsule Networks with the VGG19 backbone enhances spatial dependency retention during better feature rep-
resentations and more precise classification of diseases for finer symptom variations. An ensemble activation
strategy combining features across different layers enhances the diversity and robustness of learned features.
This avoids overfitting small datasets because it uses an ensemble of learned patterns rather than relying too
much on the activations of particular layers. Depth-wise separable convolutions and capsule layers can ef-
ficiently provide a multi-scale feature extraction mechanism, essential for capturing fine and broad disease
features that would help the model deal well with intra-class variation. This manuscript discusses recent works
concerning deep learning for leaf-based plant diseases with particular attention to CNNs, capsule networks,
and other hybrids in Section 2. The ensemble of modified VGG19 capsule networks and ensemble activation
functions designed for feature representation and classification enhances the detail provided in section 3. In
Section 4, the rest of the experimental setup and how the data was trained and tested were discussed, analysed
and compared with other existing models. The concluding section outlines the most important findings from the
research, noting in particular the model’s ability for real-time edge deployment on the NVIDIA Jetson Nano,
and offers suggestions for future work and possible enhancements.

2 Related Work

M. Bhagat et al. [6] developed a CNN-based model for automatic detection of bacterial spots in bell pepper
plants, which shows early recognition of plant diseases to improve agricultural productivity in developing coun-
tries. Zhang et al. [7] combined Inceptionv3 with ResNet50 into a unified CNN architecture that outperformed
standard CNNs by adding data augmentation, early multi-network stopping, and increasing generalisation and
weakening overfitting. A recent study by Diana Andrushia et al. [8] studies a grape leaf disease determination
problem using convolutional capsule networks. This novel approach preserves spatial relationships across dif-
ferent features with much variation in the datasets utilised. Wei, H.P. et al. [9] show how transformer-based
methods outperform CNNs by 4-6% in visual style transfer tasks, demonstrating better feature retention and
style application. Their methodology integrates patch-based input processing, allowing for finer granularity
in feature extraction and improving overall model interpretability. Zhao et al. [10] achieve state-of-the-art
performance in self-supervised monocular depth estimation and visual odometry, reducing error rates by 20%
compared to previous CNN models with data augmentation. Chundi et al. [11] report a 30% reduction in
power consumption and a 40% increase in processing speed for FPGA-accelerated binary neural network train-
ing. Their methodology focuses on computation-in-memory techniques, significantly reducing latency and
increasing throughput. In the agricultural domain, Alirezazadeh P. et al. [12] report that integrating atten-
tion mechanisms increases classification accuracy by 5-7% for plant disease detection, enhancing sensitivity
to subtle leaf features. The methodology employs channel and spatial attention to amplify critical features
while suppressing irrelevant background noise. Nawaz, M. et al. [13] achieved 97% accuracy in plant disease
classification using VGG-19-based Faster-RCNN, significantly outperforming baseline CNNs by 8%. Their
approach leverages region proposal networks (RPN) to locate diseased areas precisely, optimising detection
accuracy. Parakh et al. [14] apply CNNs to detect bell pepper diseases, highlighting the practical application of
convolutional networks in precision agriculture. Bhagat M. et al. [15] cla[3] ssify bell pepper leaf diseases us-
ing CNN architectures, reinforcing the role of deep learning in disease detection. Kundu, N. et.al [16] conduct
comparative analyses of deep learning models for bell pepper disease classification, offering insights into the
performance of different approaches. Jiang, F. et al. [17] apply deep learning and SVM techniques to classify
rice leaf disease, broadening agricultural applications. Kurmi, Y. et al. [18] classify leaf images for crop disease
detection, demonstrating the applicability of CNNs to diverse datasets. Thakur A. et al. [19] explore transfer
learning across different bell pepper disease detection models, improving model generalisation. Altan, G. [20]
evaluates Capsule Networks for plant leaf disease classification, highlighting the advantages of capsule-based
architectures in capturing spatial hierarchies. Ye M. et al. [21] propose a lightweight VGG-16 model for remote
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sensing image classification, illustrating the potential of compact architectures. Kumar et al. [23] systemati-
cally review deep learning techniques for plant disease detection, consolidating various approaches. Dai M et
al. [24] specified a lightweight GoogLeNet modified for real-time field testing that solved high computational
needs. In addition, transfer learning and data augmentation approaches improve model performance, solving
issues of overfitting and low training data. This research proposes a hybrid deep learning model focusing on
data augmentation to solve these problems and increase accuracy.

3 Methodology

The architecture of the proposed model consists of five sequential blocks based on the classical VGG19 struc-
ture. All DWSC layers of each block significantly lower the computation load while retaining the extraction of
spatial features. The batch renormalisation with convolutional layers is used to improve the stability of training
and generalisation, so this architecture is core to VGG19’s conception, while a leaner design tailored for edge
devices. To reduce the chances of overfitting, the model is trained with a learning rate of 0.001 and a dropout of
40%. Also used ensemble activation that improves the output of a single neuron by merging several nonlinear
activation functions, which ensures that learning complex decision boundaries is done more easily. The capsule
layer with squash activation is added to control spatial and hierarchical relationships among features. This helps
retain the essential parts and poses needed in images of leaves with diseases for the network. Furthermore, the
system applies a changed version of the Adamax optimiser, which speeds up convergence and stabilises it by
adjusting the learning rate based on the gradient moments. Additional regularisation techniques also improve
the strength and dependability of the model, making it stronger for rapid deployment in real-time agricultural
settings. Small datasets and complex intra-class variations make achieving classifiability in leaf disease clas-
sification difficult. These are leveraged to draw diverse patterns learned by each to make a more accurate and
generalisable model. It enhances the robustness of the classification network against small biases in the datasets
and results in a more stable output for each disease class. Incorporating the Capsule Network in the ensemble
enhances its capability to learn and tackle the spatial complexity of leaf diseases. Hence, by getting features
of the Capsule Network into the activation of the ensemble, it enjoys a rich set of hierarchical features, which
enhance its capacity to generalise over a wide array of different disease patterns. Combining VGG19’s depth-
wise separable convolutions with the spatially aware capsule network would make the proposed model even
more effective in closely relating leaf diseases.

In Figure 2, VGG19-Capsule network with ensemble activation (Leaky ReLU & GELU) classifies bell pep-
per and grape leaf diseases using 256×256 input images. The model employs DWSC in five blocks (filters: 64,
128, 256, 512) with batch normalisation, max-pooling, and dropout for feature extraction. Leaky ReLU pre-
vents dead neurons, while GELU ensures smooth activation. A Conv2D layer (64 filters, 1×1 kernel) follows
each block. The capsule layer with dynamic routing captures hierarchical and spatial relationships, using the
squash activation function to normalise outputs and represent feature probabilities. AveragePooling2D down-
samples feature maps before flattening into a 1D vector for further processing. The dense layers (4096 neurons)
employ ensemble activation, L2 regularization, and dropout (0.6, 0.4) to enhance generalisation. The softmax
activation function refines features for accurate classification. Combining capsule routing, ensemble activation,
and regularization ensures robust and precise plant disease detection. The bell pepper and grape leaf dataset
was created by merging publicly available data with proprietary data collected from the field. Concerning pub-
licly available pictures, image data augmentations such as rotation, flipping, colour adjustments, and gamma
correction were utilised to increase the volume of data and improve model performance. Afterwards, the dataset
was partitioned into 70% for training purposes, 20% for validation, and 10% for testing so that they could be
trained on a Jetson Nano GPU platform.
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Figure 2: The architecture of Depth-wise Separable VGG19 and Capsule Networks for bell pepper and grape
leaf disease classification with ensemble activation.
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3.1 Dataset Overview

This research used two different datasets to classify bell pepper and grape leaf diseases, as explained in Tables
1 and 2. The bell pepper dataset contains binary class labels as ‘healthy’ and ‘unhealthy’. In contrast, the grape
leaf dataset poses a multi-class challenge with Black Measles, Black Rot, Isariopsis Leaf Spot, and healthy
samples. The bell pepper dataset comprises 18,124 images, containing 6,563 healthy, 6,356 unhealthy, and
5,205 augmented images. The grape leaf dataset is more comprehensive, with 30,094 images of 4,385 healthy
samples and 8,020 augmented samples.

Sl No. Dataset No. of healthy images No. of unhealthy images No. of augmented images Total
1 PlantifyDr [3] 3449 4014 2960 10423
2 Plant village [4] 1478 997 960 3435
3 Sravanneeli [5] 850 1000 810 2660
4 Custom dataset 786 345 475 1606

Total 6563 6356 5205 18124

Table 1: Details of the bell pepper dataset used in this research, with and without augmentation.

Sl No. Dataset Healthy
Images

Black
Measles

Black Rot Isariopsis
Leaf Spot

Augmented
Images

Total

1 PlantifyDr 2594 3783 3596 3228 5200 18401

2 Plant village 339 1107 944 861 1270 4521

3 Sravanneeli 1000 1383 1180 1076 1145 5784

4 Custom
dataset

452 231 145 155 405 1388

Total 4385 6504 5865 5320 8020 30094

Table 2: Details of the grape leaves dataset used in this research, with and without augmentation.

In deep learning-based image classification, augmentation becomes essential, especially with an imbalanced
dataset. It aids in simulating several scenarios about rotation, flipping, an increase in brightness, and even
the introduction of noise, which a plant leaf might experience in real-world situations like sunlight, occlusion,
and angles. In this reseach, augmentation was aimed at increasing the training sample size while reducing
model overfitting and improving generalisation in field data. For example, the PlantifyDr dataset for grape
leaves was supplemented with an additional 5,200 samples for class imbalance to aid the model in learning
disease-specific features. Likewise, augmentation was necessary for bell pepper images to balance the healthy
and unhealthy classes while preserving high classification accuracy. Using model-enhanced data, the pro-
posed VGG19-CapsNet was trained on a well-balanced dataset representing the complexity and variability of
agricultural environments, essential for reliable deployment in practical agricultural settings focused on dis-
ease prediction. The DWSC technique breaks down standard convolution operations into two distinct stages:
depthwise and pointwise convolutions. Each input channel is separately filtered to extract the spatial fea-
tures in the depthwise stage. This is followed by pointwise convolution, where a 1×1 kernel is applied to the
channel-wise outputs to fuse inter-channel features and enable feature fusion at higher levels. This separation of
DWSC reduces the number of trainable parameters and the computational burden, making it ideal for resource-
constrained situations. Feature extraction is further enhanced with Capsule Network layers, which maintain the
spatial hierarchies and transformations dependent on the viewpoints of the input data. These capsule layers are
useful for grouping and enhancing class-specific representation of the low-level features, which the dense lay-
ers process for final classification. To promote interchangeability of the model with varying data distributions,
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a blend of activation functions, specifically ReLU and GELU, is employed. This approach to hybrid activation
enhances the model’s complexity but prevents overfitting. With the implementation of DWSC’s light-weight
structure, the spatial awareness of Capsule Networks, and ensemble activations for generalisation, the proposed
model displays improved classification performance and optimized efficiency.

3.2 Parameters of the Proposed Plant Leaf Disease Classification Model

In this research, we have enhanced the accuracy of the real-time model for classifying plant leaf diseases Batch
normalisation normalises the activations as follows;

µB =
1

m

m∑
i=1

xi and σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (1)

x̂i =
xi − µB√
σ2
B + ϵ

and yi = γx̂i + β (2)

In Equation 2, γ and β are learnable parameters, while batch renormalisation introduces two additional
parameters, r and d, ensuring that normalised activations align with dataset statistics. The batch size determines
the number of samples processed per training iteration. In this research, different batch sizes of 9, 16, and 32
were tested to evaluate their performance on the model. A batch size of 9 with a 0.001 learning rate and 60
epochs led to the highest classification accuracy. Also, some comparisons were made with different learning
rates of 0.1, 0.01, and 0.001 for the model’s general convergence and generalisation performance. All results
from the experiments are reported in Table 3, which encapsulates the best configuration for the training of the
proposed architecture.

Sl.No. Batch Size LR No. of Epoch
Accuracy Bell pepper Accuracy Grape

Training ValidationTesting Training ValidationTesting

1 9

0.1

60

99.12 98.43 99.54 99.16 98.48 99.60

0.01 99.23 98.65 99.78 99.26 98.70 99.83

0.001 99.98 99.81 99.79 99.94 99.84 99.84

2 16

0.1

60

98.70 98.34 98.10 99.75 98.97 99.17

0.01 99.10 98.40 99.20 99.23 98.16 99.34

0.001 99.48 99.23 99.73 99.90 99.90 99.97

3 32

0.1

60

97.24 97.13 98.00 97.11 97.08 97.04

0.01 97.54 97.24 98.40 97.23 96.86 97.70

0.001 97.86 97.76 98.56 97.92 98.00 98.86

Table 3: Comparison of the various parameters of the proposed plant leaf disease classification model with
different batch size (Bs), learning rates (Lr).

3.3 Training Progress

For the categorisation of bell pepper and grape plant leaf diseases using the VGG19-CapsuleNet model, the
dataset was split meticulously into training, validation, and testing subsets with a ratio of 70:20:10. This split
is necessary for balancing the learning processes and the ability to generalise with unseen data. This divi-
sion guarantees that the model can utilise a sufficiently large portion of the data (70%) for training, which
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allows learning and feature internalisation. A portion of the validation set, which is 20 percent, assists in hy-
perparameter tuning and model performance evaluation during the training phase to prevent overfitting while
ensuring generalisation. The additional 10 percent is allocated strictly for testing, ensuring an unbiased, inde-
pendent assessment of the model’s performance in practical applications. This division maintains equilibrium
amongst learning, optimisation, and evaluation. Accuracy, precision, recall, and F1-score are evaluation met-
rics computed from this subset to determine the model’s performance and trust in practical applications. Thus,
the developed deep learning model achieves robustness, generalizability, and optimal performance with this
structured data partitioning and evaluation scheme.

Sl No. Dataset Training Validation Testing Total
1 PlantifyDr 7296 2085 1042 10413
2 Plant village 2405 687 343 3435
3 Sravanneeli 1862 532 266 2660
4 Custom dataset 1124 321 161 1606

Total 12687 3625 1812 15454

Table 4: Dataset Split Overview for Bell Pepper Leaf Disease Classification using VGG19-CapsNet.

Sl No. Dataset Training Validation Testing Total
1 PlantifyDr 1288 3680 1840 18401
2 Plant village 3165 904 452 4521
3 Sravanneeli 4048 1156 580 5784
4 Custom dataset 972 278 138 1388

Total 15088 4482 2240 22410

Table 5: Details of the grape leaf dataset used for training, testing, and evaluation are used in the proposed
VGG19-CapsNet model.

Tables 4 and 5 shows the split ratio of training, validation, and testing dataset, which capture the methodology
for evaluating the proposed VGG19-CapsNet model concerning bell pepper and grape leaf disease classification
tasks. About the bell pepper dataset, 15,454 images were used, consisting of 12,687 images used for training,
3,625 images used for validation, and 1,812 images set aside for testing. The grape leaf dataset contained 22,410
images, allocating 15,088 for training, 4,482 for validation, and 2,240 for testing. This dataset allows multi-
class classification, including Black Measles, Black Rot, and Isariopsis Leaf Spot. A large part of the validation
and testing samples in the grape dataset needed to be collected from the PlantifyDr source, thus making it
possible to evaluate the model’s generalizability thoroughly. Using custom datasets is particularly important
for capturing variabilities in the environment and enhancing the robustness of the model. With this thorough
and detailed data partitioning approach, the VGG19-CapsNet model possesses improved binary and multi-class
classification capabilities, exhibiting consistent dependability and usefulness in practical agricultural settings.

In Figure 3, the sharp increase in accuracy indicates that the model successfully trained on the data, exceed-
ing 98% accuracy within the first 10 epochs and stabilising just above 99.5% for training and validation. This
demonstrates how effectively the model extracts disease-specific input data features. During training, valida-
tion accuracy nearly tracks the training accuracy curve with very little divergence, which illustrates the strong
generalisation capability of the model while suggesting that overfitting is, in fact, unlikely. The loss curve also
demonstrates the same characteristics, with steep declines in the training and validation loss occurring during
the first couple of epochs until the loss approaches zero and remains consistently low. Minor peaks in train-
ing loss are bound to occur due to stochastic variation and will not impact the overall directed learning trend.
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(a) Accuracy Curve (b) Loss Curve

Figure 3: Performance evaluation of bell pepper leaf disease classification using VGG19-CapsNet: accuracy
and loss curves.

The parallel and low-loss curves prove the model’s stability and robustness during training are consistent and
unchanging.

As illustrated by the training and validation accuracy curves in Figure 4, the model demonstrated an im-
pressive level of accuracy (99%) by the 10-epoch mark; this leap forward was attributed to the rapid learning
processes of the model in initial epochs, and capped accuracy was maintained for the rest of the training period.
Moreover, the confirmation accuracy steadily paralleled the training accuracy, indicating assessment generali-
sation to new data while only a small amount of overfitting occurred. However, the small oscillation in training
accuracy past epoch 20, characteristic of deep learning models, does not detract from their overall effectiveness,
stability and performance. These observations are further confirmed in the loss curves. During the latter stages
of the run, training and validation losses promptly decrease to near-zero values while stagnating, demonstrat-
ing effective convergence and efficient learning. In this case, learning retention is confirmed by undergoing
low training loss and grade-deficient drop in validation loss after 10 epochs while maintaining alignment with
training loss. Thus, the overall results indicate strong performance by the VGG19-CapsNet model on the multi-
class grape leaf disease classification tasks. Practical implementation of the model can be viewed as viable due
to exceptional performance indicators of accuracy, low loss, and stable curves, along with the responsiveness
required by automated smart agricultural systems.

(a) Accuracy Curve (b) Loss Curve

Figure 4: Performance evaluation of grape leaf disease classification using VGG19-CapsNet: accuracy and loss
curves.
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4 Model Analysis and Experimental Results

4.1 Performance Analysis

The assessment of the proposed approach encompasses metrics such as accuracy, precision, recall, specificity
and F1 score. Throughout the 60 epochs, training accuracy and loss are meticulously tracked. Performance
metrics for both augmented datasets are presented in Figure 5.

Figure 5: Performance evaluations on the training and validation dataset of bell pepper.

The classification performance of the proposed deep learning model on bell pepper disease detection is
evaluated using standard metrics such as Accuracy, Precision, Recall, Specificity, and F1 Score. The Figure 5
shows that the model achieved 100% on all five metrics for training datasets, indicating that the network has
learned the training data well. In this case, the validation metrics were also high: 98.11% for Accuracy, 98.63%
for Precision, 97.32% for Recall, 98.49% for Specificity, and 98.18% for F1 Score. These metrics prove
the model can retain good predictive performance on previously unseen data. Aside from the five metrics,
Recall on the validation dataset is the lowest at 97.32%, indicating that some true positive disease instances
could be misclassified. This metric is important in agricultural disease detection processes, especially for bell
pepper plants, because true negatives could result in undiagnosed plant diseases and subsequent loss in yield
potential. The high Precision of 98.63% shows that most positive predictions are correct, indicating minimal
false positives. The Specificity 98.49% augments alongside these claims to further suggest that the model is
very dependable in confirming the absence of infection in leaves. The model achieves an F1 Score of 98.18%
on the validation set, which illustrates a blended score of Precision and Recall, a highlight of the model’s strong
performance since it achieves minimal errors in all types of classification.

In Figure 6, the deep learning model achieves perfect performance (100%) on all metrics for the training
dataset, which suggests an appropriate model fit and full representative learning on the provided training sam-
ples. In contrast, the validation performance metrics are lower, illustrating the model’s generalization ability
towards new data. The validation Accuracy and Recall are around 98.44% and 98.41%, respectively. These
values depict the model’s high confidence in making accurate predictions and significantly minimizing false
positive outcomes. The Recall value of 98.20% shows that the model accurately detects many diseased grape
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Figure 6: Performance evaluations on the training and validation data set of the grape

leaves, with very few being incorrectly classified as non-diseased. The Specificity, which assesses the correct
identification of healthy leaves, scores slightly lower at 97.48%, suggesting that a small number of healthy sam-
ples may be incorrectly classified as unhealthy. The F1 Score, which combines Precision and Recall, records
98.40%, verifying that the model maintains strong sensitivity and reduced false alerts.

4.2 Testing the Model

The testing stage of the proposed VGG19-CapsNet model starts with loading the images, results visualization,
and required computing libraries using the Python interface. Specifically, upon importing the necessary pack-
ages, the testing image is stored in a fixed location and is fetched using the Python Imaging Library. Matplotlib
is used to visualize the output, while image operations are handled using the Python Imaging Library. Further-
more, the test image will be resized to 256x256 pixels, the standard configuration for processed images before
being fed into the trained model. During this step, the pixel values will undergo normalisation to the range of
[0, 1] to align with the training data distribution. Finally, one more dimension will be added to the image array
to comply with the expectations of the batch input shape of the deep learning model. The final predicted label is
taken from the class that scored the highest among the prediction scores, class-wise output. The selected class’s
prediction confidence is displayed to quantify the model’s certainty. The prediction of bell pepper and grape
leaf disease categories is shown and visualised in Figures 6 and 7, respectively. The model performance was
assessed on test samples, where these visualisations show the ability of the system to recognise the tested sam-
ples in real-time while proving its functional intelligence for harnessed autonomous deployment. The testing
stage of the proposed VGG19-CapsNet model starts with loading the images, results visualization, and required
computing libraries using the Python interface. Specifically, upon importing the necessary packages, the testing
image is stored in a fixed location and is fetched using the Python Imaging Library. Matplotlib is used to visu-
alize the output, while image operations are handled using the Python Imaging Library. Furthermore, the test
image will be resized to 256x256 pixels, the standard configuration for processed images before being fed into
the trained model. During this step, the pixel values will undergo normalisation to the range of [0, 1] to align
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with the training data distribution. Finally, one more dimension will be added to the image array to comply with
the expectations of the batch input shape of the deep learning model. The final predicted label is taken from
the class that scored the highest among the prediction scores, class-wise output. The selected class’s prediction
confidence is displayed to quantify the model’s certainty. The prediction of bell pepper and grape leaf disease
categories is shown and visualised in Figures 6 and 7, respectively. The model performance was assessed on
test samples, where these visualisations show the ability of the system to recognise the tested samples in real-
time while proving its functional intelligence for harnessed autonomous deployment. The findings suggest that

Figure 7: Experimental Evaluation of the VGG19-CapsNet Model for Bell Pepper Leaf and Grape Leaf Disease
Detection on NVIDIA Jetson Nano GPU computer.

the model has high classification accuracy across all the disease classes, even when run on the GPU-enabled
edge device NVIDIA Jetson Nano. To evaluate the practical robustness of the system, the model was tested
against benchmark curated datasets and real-life field evaluations conducted in various environments, including
daylight, nighttime, and foggy weather conditions. These results validate the system’s generalisation capability
under different illumination and weather conditions. The model’s optimisation procedure is executed with an
added layer using a Modified Adamax optimiser, which uses an exponentially weighted infinity norm. This
change enhances the stability and responsiveness during training to adjust for situations where the gradients
are subject to considerable change. The optimiser achieves convergence consistency by mitigating these issues
and increasing overall dataset and architecture agnostic robustness. The initial image undergoes hierarchical
feature extraction in the proposed framework by applying 3×3 convolutional filters with a stride of 2 in the
CNN layers. Increasing feature complexity employs filter bank activation through a stacked ensemble of Leaky
ReLU (LReLU) and GELU activation functions across 6 blocks, enhancing non-linearity and feature discrim-
ination. Pooling retains important information while further downscaling the spatial resolution of the feature
maps. These layers are interspersed with dropout and other regularisation techniques to manage overfitting
concerns. The convolutional layer preceding classification applies L2 regularization while global average pool-
ing provides a dropout of 40%, which allows for arbitrary sample generation during testing. The model derives
classification probabilities for each input image by applying the Softmax activation function, which outputs
a probability distribution over the possible disease classes for grape and bell pepper leaves. The architecture
assures the model that it will yield reliable outputs for automated agricultural monitoring and diagnostics.
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4.3 Comparative Analysis

The assessment of the framework implementation based on VGG19-CapsNet includes its evaluation against
other deep learning frameworks that focus on detecting and classifying plant leaf diseases. This assessment
evaluates current literature to ensure that only the most recent approaches are used. The review and analysis
were performed to demonstrate the extent to which the method is congruous with or surpasses advances in
diagnosing diseases in plants, alongside computer vision. A summary of the selected frameworks in for plant
leaf disease detection using deep learning is provided in Table 6. The table lists diagnostic components includ-
ing the model architecture, datasets employed, training regimens, and evaluation outcomes. This synthesises a
constructive assessment of the approach proposed that is well-defined in terms of its benchmarks, discerning
strengths, and examining prospects for improvement.

Methodology Image Class Optimizer
Used

Dataset Pre-
processing

Accuracy Batch
size

Learning
rate

Proposed
VGG19-
CasuleNet
Model

Bell pepper,
Grape

Modified
Adamax

Plant Village,
custom dataset

Augmented 98.11,
98.44

9 0.001

AlexNet,
VGG 16, 19
[24]

Bell pepper SGD Plant Village Augmented 94.86,
93.67

9 0.01

Concatenation
of VGG16
and AlexNet
[25]

Bell pepper
and fruits

- Collected from
North Mecha
Woreda

Augmented 95.82,
93.21

64 -

ResNet 50,
ResNet 152
[15]

Bell pepper Adam Plant Village Augmented 98.95,
98.88
(ResNet
152 with
DA)

64 0.01

Table 6: Comparative evaluation of the proposed VGG19-CapsNet model for grape and bell pepper disease
classification.

One of the key issues encountered while developing the VGG19-CapsNet model for disease detection in plant
leaves was the inadequate diversity within the dataset. The absence of lighting variation, the leaves’ orientation,
and background settings were very limiting to achieving good deep learning model generalisation. A secondary
issue concerned environmental shifts and the complicated nature of real-time implementation. In real-time ex-
ecution, requirements like ultra-low latency, high flexibility, and strong performance against changes in context
pose great challenges, particularly when the models are executed on GPU-based embedded systems. The Jetson
Nano single-board computer with augmented CPU capabilities and increased memory bandwidth was able to re-
solve some of these challenges and improve the latency problem. Adopting the VGG19-CapsNet approach has
socio-economic and environmental implications, reinforcing several United Nations Sustainable Development
Goals, particularly SDG 2 (Zero Hunger), SDG 8 (Decent Work and Economic Growth), and SDG 12 (Respon-
sible Consumption and Production). The system’s early and precise diagnosis of crop diseases significantly
minimises yield losses, protects harvests, and improves the efficiency of agricultural resources, including pes-
ticides and fertilizers. This degree of accuracy reduces environmental damage and fosters greater sustainability
in farming operations. In addition, farmers improve their earnings and financial health through reduced oper-
ational costs, increased crop quality, enhanced income from premium market access, and improved financial
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stability. The promotion of innovation and the transition to smart rural agriculture, essential in promoting rural
development and sustainable food systems, are motivated by AI-powered diagnostic tools. VGG19-CapsNet
enables real-time detection and classification of diseases, allowing farmers to act proactively, which directly
boosts productivity and resilience. This approach enhances the economic productivity of farming enterprises.
It supports sustainable development through improved food security, sustainable resource use, and economic
growth using advanced agricultural technologies, enhancing overall welfare.

5 Conclusion

This research presents a new scalable and efficient deep learning framework, VGG19-CapsNet, utilizing en-
semble activation functions of Leaky ReLU and GELU to classify bell pepper and grape leaf diseases. It
addresses important issues related to computational burden, loss of spatial information, intra-class variability,
and overfitting on small agri-data sets paradigms in agricultural disease detection. Captive layers ensure en-
hanced detection of subtle disease patterns by capturing higher spatial relationships. Ensemble activations offer
better gradients and non-linearity, which enhances generalization. The empirical assessment conducted on the
curated and augmented datasets from PlantifyDr, PlantVillage, Sravanneeli, alongside field datasets collected
externally, revealed astounding results, 98.11% and 98.44% accuracy on bell pepper and grape leaf valida-
tion sets, respectively. Implementation on the edge device, NVIDIA Jetson Nano, tested real-time agricultural
diagnostics and confirmed the model’s accuracy for edge devices under varying environmental conditions.
Comparisons against the state-of-the-art model’s extensive range of cross-architecture benchmarks confirmed
the model’s unparalleled accuracy, speed, and overall robustness compared to the other architectures. This re-
search sets a new standard in developing lightweight and precise frameworks for plant disease classification.
In particular, attention will be directed toward adapting the model for multi-crop classification in the future,
adding attention layers, and implementing real-time drone or mobile imaging systems into fully automated
smart farming technology.
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