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Abstract
This work introduces two new distance metrics for comparing labeled arrays, which are common outputs

of image segmentation algorithms. Each pixel in an image is assigned a label, with binary segmentation
providing only two labels (‘foreground’ and ‘background’). These can be represented by a simple binary
matrix and compared using pixel differences. However, many segmentation algorithms output multiple
regions in a labeled array. We propose two distance metrics, named LAD and MADLAD, that calculate the
distance between two labeled images. By doing so, the accuracy of different image segmentation algorithms
can be evaluated by measuring their outputs against a ‘ground truth’ labeling. Both proposed metrics,
operating with a complexity of O(N) for images with N pixels, are designed to quickly identify similar
labeled arrays, even when different labeling methods are used. Comparisons are made between images
labeled manually and those labeled by segmentation algorithms. This evaluation is crucial when searching
through a space of segmentation algorithms and their hyperparameters via a genetic algorithm to identify
the optimal solution for automated segmentation, which is the goal in our lab, SEE-Insight. By measuring
the distance from the ground truth, these metrics help determine which algorithm provides the most accurate
segmentation.

Key Words: Computer Vision, Image Segmentation, Manual Annotations, Labeled Arrays, Distance Metrics,
Fitness Function, Genetic Algorithm.

1 Introduction

Image segmentation is a fundamental task in computer vision, crucial for various applications, including med-
ical imaging and autonomous driving. However, no single segmentation algorithm can effectively address all
challenges across different domains. The complexity and variability of images necessitate tailored algorithms
that adapt to specific tasks. Despite advancements in machine learning (ML), particularly deep learning, these
methods require extensive training data, typically limiting their use to large, well-funded projects. Smaller
projects often adapt existing algorithms or resort to manual annotation, which is time-consuming and prone to
inconsistency.
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1.1 Background and Motivation

Existing segmentation metrics such as the Jaccard Index [1, 2, 3] and Dice Coefficient [4, 5], have been instru-
mental in comparing binary segmentations but fall short when dealing with multi-label arrays. These metrics
assume consistent labeling, which is not always the case in practice, leading to inaccurate assessments when
labels differ in naming or order, even if the segmentations are functionally identical (see Figure 1). This limita-
tion is particularly problematic when comparing outputs from different segmentation algorithms or evaluating
an algorithm’s performance against a manually annotated ground truth, as these metrics can either understate or
overstate differences based on superficial label mismatches rather than the actual quality of the segmentation.

Table 1 provides a selection of common segmentation metrics. In the table, “Label Type” is categorized as
either binary or multi-label. Binary masks indicate pixels labeled simply as foreground or background, while
multi-label denotes multiple classes. The column “Label Invariant” indicates if the metric is sensitive to label
naming, and the last column provides the computational complexity with respect to the image size.

Table 1: Comparison of segmentation metrics with their pros, cons, label type, label invariance (sensitivity to
label naming), and computational complexity. Bolded rows indicate metrics used in this paper’s experiments.

Metric Name Label
Type Pros Cons Label

Invariant Complexity

Jaccard Index (IoU)
[1, 2, 3]

Binary
Simple to interpret, widely

used, suitable for object
detection tasks

Less sensitive to smaller
objects, does not account for

class imbalance
No O(N)

Dice Coefficient
[4, 5]

Binary
Emphasizes overlap, used
as a loss function in deep

learning models

Less sensitive to smaller
objects, does not account for

class imbalance
No O(N)

Hamming Distance
[6]

Binary Computationally efficient
Doesn’t account for spatial
relationships, ineffective for

misaligned masks
No O(N)

Hausdorff Distance
[7]

Binary
Provides insights into

maximum error, useful for
precision applications

Computationally intensive,
may overemphasize outliers

No O(N2)

Matthews Correlation
Coefficient (MCC)

[8]
Binary

Balanced measure
considering true/false

positives and negatives

Less intuitive, less commonly
used in image segmentation

No O(N)

Precision-Recall
Curve (PR Curve) [9]

Binary
Insensitivity to class

imbalance

Interpretation complexity, can
be misleading if one class is

rare, not a single number
No O(N)

F1 Score, ROC, AUC
[10, 11, 12]

Binary
Insensitivity to class

imbalance, single summary
metric

Originally for binary
classification, threshold

dependence
No

O(N) for
each

threshold
Normalized

Cross-Correlation
(NCC) [13, 14]

Binary
Comparison of spatial

alignment and translated or
rotated masks

Computationally intensive,
sensitive to noise and
intensity variations

No
O(N.logN)

if
optimized

γ-Binary Similarity
Measure [15]

Binary Not sensitive to label
assignments

Not applicable to
multi-label arrays Yes O(N)

Mean Intersection
over Union (mIoU)

[16]
Multi-label

Accounts for class
imbalance, per-class and

average performance

Averaging might mask poor
performance in individual

classes
No O(N)

Fowlkes-Mallows
Index (FMI) [17]

Multi-label
Extends precision and recall

concepts to multi-label
scenarios

Can be misleading in
imbalanced classes

No O(N)

Tversky Index
[18, 19]

Multi-label
Handles imbalanced classes,

adjustable sensitivity
Less intuitive, may require

tuning of parameters
No O(N)

Kappa Index [20] Multi-label
Measures agreement

between categorical labels
May not handle class

imbalance well
No O(N)

The metrics presented in the table offer a comprehensive toolkit for assessing image segmentation perfor-
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mance. A primary drawback of many of these metrics is that they require consistent labeling throughout.
However, the label names and their ordering are generally unimportant and are assigned based on the mechan-
ics of the individual segmentation algorithm. This limitation is illustrated in Figure 1, where different colors
represent different labels, and the Hamming distance [6] registers as its maximum (the total number of pixels in
the image) despite identical segmentations, whereas the correct distance value between them should be zero. A
potential solution is to cycle through the label pairs and return the minimum Hamming distance. However, this
method is only feasible for a small number of labels, as the computational effort required grows dramatically
with the increase in the number of labeled regions.

Figure 1: Example of binary label segmentation from the Sky dataset [21], with the original image on the left
followed by two segmentations. Both the middle and right labeled arrays represent identical segmentations of
the original, illustrating how a typical labeled array metric evaluates the similarity between the ground truth and
the segmented array. Despite different labels being assigned to specific regions in these segmentations, they
should ideally be label invariant and yield a distance value of zero.

A notable binary labeled array comparison metric is the γ-Binary Similarity Measure, introduced by Mustafa
[15]. This metric accurately compares the two binary arrays shown in Figure 1 but is not applicable to multi-
label arrays. When considering multi-label segmentation, it is important to recognize the complexity that arises
from handling multiple objects or structures in a single image simultaneously.

A labeled array consists of N×M pixels with U possible labeled regions, where each pixel is given a unique
label u ∈ U (See Figure 2). The number of labels within an array can vary, but is naturally bounded between
one and the total size of the array (1 ≤ u ≤ U ≤ N ×M ).

Figure 2: Example of multi-label segmentation of an image. The left image is from the KOMATSUNA dataset
[22]. The middle image is a visual representation of the ground truth provided with the data, with different
colors representing different labels. The right image is an example output from a segmentation algorithm
attempting to match the ground truth. A typical labeled array metric measures the similarity between the
ground truth and the multi-region segmentation.

In summary, the intricate nature of multi-label segmentation demands a diverse set of metrics, which have
undergone significant refinement and investigation in contemporary research. As with binary segmentation,
deep learning has influenced the development of these metrics, but the challenges of handling multiple labels
simultaneously introduce a unique set of considerations and requirements.
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1.2 Contributions

To address these challenges, we introduce two new distance metrics—LAD and MADLAD—designed specifi-
cally for comparing labeled arrays, including multi-label segmentations. These metrics are insensitive to label
permutation and naming, ensuring that functionally equivalent segmentations are recognized as such, regard-
less of the labeling scheme. Both LAD and MADLAD operate with a complexity of O(N), making them
computationally efficient for large-scale applications.

Our research team, SEE-Insight, aims to develop a tool like SEE-Segment for searching through a space of
segmentation algorithms and their hyperparameters via a genetic algorithm to identify the optimal solution for
automated segmentation [23, 24]. For this genetic algorithm, a suitable ‘fitness function’ or segmentation metric
that is appropriate for multi-label cases and is insensitive to label permutation or naming is needed. However,
as shown in Table 1, none of the metrics, to the best of our knowledge, meet these requirements. Therefore,
the primary contribution of this paper is the creation of such a metric. In the table, the bolded rows indicate the
metrics used in the subsequent sections for experiments and comparisons with our developed metrics. Although
they do not meet our requirements, we used them in experiments to provide a basis for comparison.

The contributions of this paper are as follows:

1. Development of LAD and MADLAD metrics: Two novel metrics are proposed that accurately measure
the distance between multi-label arrays, addressing the shortcomings of existing metrics that are sensitive
to label naming and order.

2. Evaluation and Validation: We conducted a comprehensive evaluation of LAD and MADLAD, includ-
ing a comparison with existing metrics and an assessment against human judgments of segmentation
quality. This evaluation highlights the metrics’ effectiveness and their alignment with human perceptual
accuracy, validating their use in both synthetic and real-world scenarios.

3. Application to Genetic Algorithms: We demonstrate how these metrics can be integrated into a genetic
algorithm framework to search for optimal segmentation algorithms, providing a robust fitness function
for evaluating multi-label segmentation tasks.

2 Methodology

In this paper, we introduce two new labeled array distance metrics, LAD and MADLAD. In this section, we
first explain the properties that a metric for evaluating segmentation in multi-label arrays should possess. Then,
we describe how we developed LAD and MADLAD as suitable candidates for this purpose.

2.1 Distance Metric Design Criteria

The desired metrics are essential for measuring the success of image segmentation on both binary and multi-
label arrays. Since successful image segmentation is defined by the problem being solved, the algorithm needs
to be compared to some “ground truth” information regarding the specific segmentation required. The metrics
for labeled arrays must: (1) be computationally efficient, (2) provide a distance measurement that can compare
the output of multi-labeled arrays, (3) be independent of the naming of the labels, for example, being indifferent
to the two segmentations shown in Figure 1, and (4) use a consistent scale with an understood bias.

2.2 Design Steps

Consider the simple binary examples shown in Figure 3. In this figure, the ground truth mask has identified
a simple box as the foreground and everything else as the background. The three ‘edge’ cases to the right of
the mask present extreme segmentation solutions that may need to be compared to the ground truth. In the first
segmentation, everything is defined as background, and in the third, as foreground. It is reasonable to assume
that any distance metric will produce the same result for both of these cases. The second segmentation acts as
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an array where each pixel is labeled uniquely, with every pixel given a unique object index. Notice that none
of these three cases match the ground truth. Any distance metric used must provide a measure as to how good
each result is relative to each other and to the ground truth.

Figure 3: An example of a ground truth array, followed by each of the extreme cases our distance metric needed
to account for. The original array acts as the ground truth, the first segmentation is labeled as all background,
the second segmentation is multi-label (with different labels for every pixel), and the third segmentation is
labeled all foreground.

This section details how we utilized the concepts behind several existing metrics to develop LAD and MAD-
LAD. These steps were instrumental in creating metrics tailored to effectively measure segmentation error.
Additionally, subsequent sections will present experiments comparing these metrics with LAD and MADLAD.

2.2.1 Normalized Hamming Distance (NHD)

First, we adapted the Hamming distance [6] to create the Normalized Hamming Distance (NHD), denoted by
dNHD. It is designed for binary arrays, where label values are either 0 or 1. The NHD is calculated by first
determining the Hamming distance (dH ), which counts the number of pixels in the ground truth labeled array
(G) that do not match the corresponding pixels in the inferred segmentation labeled array (I). This discrepancy
is then normalized by dividing by the total number of pixels in the image array (MN ), where M is the number
of rows and N is the number of columns in the image as a matrix, resulting in a value between 0 and 1. The
Hamming distance employs the XOR operation (⊕), identifying mismatches between corresponding pixels of
G and I . It outputs 0 when both pixels are the same (both 0 or 1) and 1 when they differ. The formulas for
dNHD and dH are given below:

dH =
M∑
i=1

N∑
j=1

(Gi,j ⊕ Ii,j) =
M∑
i=1

N∑
j=1

(Gi,j + Ii,j − 2 ·Gi,jIi,j), (1)

dNHD =
dH
MN

. (2)

In these formulas, Gi,j and Ii,j refer to each pixel of G and I indexed by i and j as rows and columns.
An NHD of 0 indicates no discrepancy between the ground truth and the inferred segmentation, signifying

identical segmentations. Conversely, an NHD of 1 implies no commonality between the segmentations, where
no pixels match between the ground truth and the inferred segmentation.

While NHD provides a straightforward measure of discrepancy, it falls short in scenarios where segmenta-
tions are identical in structure but differ only in their labeling. For example, two segmentations that are identical
except for the labels assigned to regions (like in Figure 1) would result in a high NHD value, suggesting a high
level of discrepancy when, functionally, the segmentations are the same. This limitation highlighted the need
for a metric capable of recognizing equivalent segmentations irrespective of label differences.

2.2.2 Binary Similarity Measure (BSM)

To address this limitation, we use the Binary Similarity Measure (BSM) from [15], a metric specifically tailored
to evaluate binary labeled arrays. This is crucial for accurately assessing binary segmentation results, where
traditional metrics may fail to account for variations in labeling conventions.
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BSM uniquely addresses discrepancies when identical segmentations are labeled differently across datasets.
It is designed for binary arrays, where pixels are either 0 or 1 (or segmentations that have only ‘foreground’ and
‘background’ labels). Here, M represents the number of rows, N the number of columns in the array, and dH
is the Hamming distance as previously explained. The core of BSM’s functionality is expressed as

∣∣∣1− 2·dH
MN

∣∣∣
or |1− 2 · dNHD|, according to [15].

BSM provides a comprehensive indicator of how similar two binary arrays are, effectively measuring how
well the inferred segmentation aligns with the ground truth. BSM calculates the overall similarity by assessing
the entire array and determining the absolute deviation from 1 of twice NHD (or the average dissimilarity across
all pixel pairs). It captures the similarity between corresponding pixels, regardless of the label values assigned.
Since the original BSM from [15] captures similarity and not the difference, we adapted it by subtracting it
from 1 to create a distance metric, denoted by dBSM , to make it comparable with our other metrics. Therefore,
we have:

dBSM = 1−
∣∣∣∣1− 2 · dH

MN

∣∣∣∣ = 1− |1− 2 · dNHD| . (3)

When two arrays are identical, their dH is zero, and dBSM becomes zero. In cases where two segmentations are
identical but with completely different labels (e.g., swapped 0 and 1 labels), all pixels are counted as “differing”
so dH equals MN , the total number of pixels, and dBSM again becomes zero, indicating a perfect match as
intended. In contrast, a simple or normalized Hamming distance would report the latter case as an extremely
poor segmentation.

While dBSM effectively addresses binary labeling discrepancies, it does not accommodate multi-label seg-
mentations. Its application is limited to binary cases, and thus it cannot handle segmentations with more than
two label types. Recognizing this limitation led to the development of further metrics.

2.2.3 Region Mapping (RM)

Initially, we developed the Region Mapping (RM) formula to handle multiple labels, evaluating the correspon-
dence between regions across two labeled arrays. In this approach, an inferred labeled array I with V regions
and a ground truth labeled array G with U regions are considered. The RM formula determines which region
in I has the largest overlap with a region in G, assigning the region in I the corresponding ground truth label
g, where 1 ≤ g ≤ U . Pixels within each region in I that do not map onto their designated g are counted and
added to a total mismatch score P . This mapping process assesses how effectively each label in the inferred
labeled array correlates with those in the ground truth, quantified by P , the total number of pixels that do not
align properly under this mapping.

This mapping process is then used to define the distance metric dRM , which is the proportion of misaligned
pixels relative to the total number of pixels in the array, providing a measure of segmentation error:

dRM =
P

MN
. (4)

The value of dRM ranges between 0 and 1, where 0 indicates a perfect match with no mismatches, and 1
indicates the worst case with no matches at all. However, we encountered the following challenges with Region
Mapping:

• Directionality: RM considers the order of comparison (from I to G). When one of the arrays is a known
ground truth, this directionality ensures that the calculation accurately assesses how well the inferred
segmentation maps onto the ground truth.

• Over-segmentation: RM does not account for the number of regions within the segmentation. This
omission can yield misleading results in scenarios of over-segmentation. As illustrated in the multi-label
column of Table 2, an inferred segmentation that is highly fragmented may inaccurately appear highly
similar to a less fragmented ground truth, provided that the largest fragments overlap significantly.
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2.2.4 Labeled Array Distance (LAD)

We developed the Labeled Array Distance (LAD) metric to address the issue of over-segmentation by account-
ing for both the number of labels in the ground truth array and the segmented array being evaluated.

The LAD distance metric, denoted as dLAD, builds upon the concept of region mapping by considering two
factors: the difference in the number of regions (labels) between the ground truth and the segmented label
arrays, and the total number of pixels that are incorrectly labeled when the best possible mapping between
regions is applied. These two quantities are then summed and normalized by the total number of pixels in the
array to ensure the metric is independent of the array size. If two labeled arrays are perfectly matched, dLAD

equals 0. On the other hand, a maximum value of 1 indicates no agreement between the arrays.
The formula for LAD is expressed as:

dLAD =
P + |U − V |

MN
. (5)

Here, U is the total number of labels (regions) in the ground truth array (G), V is the total number of labels in the
inferred labeled array (I), and P represents the total number of pixels that do not match under the best possible
mapping of regions between the two arrays. This method effectively captures both the extent of mislabeling
and the difference in the number of regions, providing a comprehensive measure of the overall segmentation
quality.

2.2.5 Mismatch Adjusted Difference for the Labeled Array Distance (MADLAD)

The LAD metric treats the differences in the number of regions and pixel mismatches equally. However, as
indicated by the data in Table 2 and often observed in practical scenarios, the number of regions in a segmen-
tation can be more critical than the pixel-level accuracy. To address this, we developed the Mismatch Adjusted
Difference for the Labeled Array Distance (MADLAD) metric, which applies an exponential adjustment to
give greater weight to discrepancies in the number of regions.

The MADLAD formula enhances the basic LAD model by introducing an exponential factor that amplifies
the impact of region mismatches, especially when the difference in the number of regions is significant. The
MADLAD metric, denoted as dMADLAD, is defined as follows:

dMADLAD =

(
P

MN
+

|U − V |
U + V

)(1− |U−V |
U+V

)
. (6)

In this equation, P , U , and V are the same as defined for the LAD metric. The base of the exponent is a
combination of the pixel mismatch error, normalized by the total number of pixels (MN ), and the proportional
difference in the number of labels. The exponent itself,

(
1− |U−V |

U+V

)
, modulates the impact of this base value

depending on the degree of region mismatch. When the label mismatch is small, the exponent is closer to 1,
minimally affecting the base value. However, as the region mismatch grows, the exponent decreases towards
zero, causing the MADLAD value to approach 1, indicating a severe discrepancy. This design ensures that
MADLAD is particularly sensitive to cases where the number of regions differs greatly, which is crucial for
accurately evaluating segmentation quality in such scenarios.

Table 2 effectively summarizes how different metrics respond to extreme segmentation cases illustrated in
Figure 3. The metrics vary significantly in their evaluations of background-only, multi-label, and foreground-
only segmentations. The “Same” column in the table represents a scenario where a labled array is compared
with itself, where logically, we expect the distance to be zero as there are no differences between the arrays.

It’s important to clarify a few points to improve the understanding of the results and the behaviors of these
metrics:

1. NHD: Reflects changes dramatically with the order of labeling due to its sensitivity to label mismatches.
It shows a high distance for multi-label scenarios, indicating a substantial mismatch.
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2. BSM: This metric is less sensitive to label mismatches in binary scenarios, showing low variation across
different types of segmentation errors.

3. RM: Appears highly effective in some cases due to its focus on the largest matching regions. It shows
no distance in the multi-label scenario, suggesting perfect overlap, which may not realistically reflect the
error in typical use cases.

4. LAD: Shows consistency in distinguishing the extremity of segmentation differences but rates the multi-
label scenario as completely erroneous (distance of 1), highlighting its sensitivity to label number mis-
matches.

5. MADLAD: Similar to LAD in its responses, with adjustments that make it sensitive to the scale of
mismatches in labeling, also rating the multi-label scenario as maximally distant.

Table 2: Comparison of different metrics applied to labeled arrays, as shown in Figure 3. The metrics are
evaluated for cases where images are segmented as all background, multi-label, and all foreground. The “Same”
column refers to scenarios where a labeled array is compared with itself, where a distance of zero is expected.

Metric Same Background Multi-label Foreground
NHD 0.00 0.95 0.99 0.04
BSM 0.00 0.08 0.08 0.08
RM 0.00 0.04 0.00 0.04
LAD 0.00 0.04 1.0 0.04
MADLAD 0.00 0.04 1.0 0.04

The table shows that while all metrics can effectively detect when two arrays are identical (distance of zero),
only NHD, LAD, and MADLAD provide meaningful assessments for more complex multi-label arrays. NHD’s
results show that its sensitivity to the order of labeling can lead to variable outcomes, indicating that while it
can handle complex arrays, its reliability might be compromised without consistent labeling. Both LAD and
MADLAD offer a robust evaluation of segmentations, particularly in recognizing the severity of mismatches in
more complicated label configurations.

3 Experiments

This section reviews a series of experiments conducted to demonstrate the utility of the LAD and MADLAD
distance metrics in multi-label segmentation, comparing them to the BSM and NHD segmentation metrics
introduced in Section 2.2.

The first experiment (Section 3.2) involves manipulating a binary array by applying noise or common mor-
phological operations to mimic segmentation errors. This experiment aims to show that LAD and MADLAD
yield similar, and often identical, results in these basic scenarios.

The second experiment in Section 3.3 utilizes multiple “ground truth” examples from challenging, real-world
images to establish a benchmark and identify a cut-off threshold for distance metric values when using LAD
and MADLAD on binary arrays.

The third experiment (Section 3.4) assesses the effectiveness of these distance metrics on real-world im-
ages by measuring their alignment with human judgment using a methodology based on human preference
assessments.

Finally, the last experiment in Section 3.5 illustrates the application of LAD and MADLAD as primary
metrics in a search algorithm aimed at finding reasonable segmentations for real-world problems.

3.1 Scope and Limitations

This study focuses on developing and validating the LAD and MADLAD metrics specifically for multi-label
segmentation tasks. Existing metrics often fall short, especially when dealing with challenges like label permu-
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tation and naming inconsistencies. To evaluate the alignment of these new metrics with human judgment, we
focused on manual segmentations, creating a diverse set of annotations for the same image. This diversity was
essential for investigating the correspondence between human preferences and metric-based rankings using the
Elo rating system.

The specific method of segmentation—manual or algorithmic—was not a central concern in the Elo-based
analysis. The primary objective was to assess how well LAD and MADLAD correlate with human judgment,
regardless of the segmentation method used. While widely adopted algorithms like thresholding (including
Otsu’s method) [25, 26], graph-cut segmentation [27], and active contour models (Snake) [28] are prevalent,
they were not the focus of this study. However, future research could extend this evaluation to include these
common algorithms, further demonstrating the versatility of the proposed metrics across a wider spectrum of
segmentation techniques.

3.1.1 Preprocessing

The inputs to LAD and MADLAD are labeled arrays (segmented images), which can be generated by various
algorithms. No preprocessing is applied to clean or normalize these arrays before computing the LAD and
MADLAD metrics.

3.2 Evaluation Through Image Manipulations

This section compares the distance metrics across five different scenarios for simulating errors: salt noise, pep-
per noise, salt-and-pepper noise, closing operation, and opening operation. These experiments focus on binary
comparisons where a 0 label (black) is considered foreground and a 1 label (white) is considered background.

3.2.1 Salt Noise

In this initial experiment, salt noise is applied to the label array representing the segmentation of a chameleon
image to observe how various distance metrics react to random noise within a bounded background region. As
depicted in Figure 4–left, the horizontal axis ranges from 0% to 100%, where 0% indicates no salt noise added,
and 100% indicates that the image is fully composed of salt noise (all pixels are salt noise, making the image
entirely white).

The results reveal a linearly increasing trend across all distance metrics. However, an outlier occurs with
MADLAD when it encounters a degenerate case, where all labels in one array are mapped to a single label in
the target array. Typically, all metrics, including MADLAD, scale between 0 and 1 under normal circumstances.
However, to clearly mark this degenerate scenario, the MADLAD value is explicitly and manually set to 1.5
using conditional statements in the code. Results for LAD and MADLAD overlap with the NHD metric, except
in the degenerate case. In the plot, the BSM values are observed to be twice the NHD values, consistent with
Equation 3. According to Equation 3, when the value of dNHD is not greater than 0.5 (as is the case here),
dBSM is equal to 2 · dNHD.

3.2.2 Pepper Noise

As depicted in Figure 4–right, pepper noise differs from salt noise primarily in the size of the regions affected
by the noise. Given that the background in this particular chameleon image is larger than the foreground, the
degenerate case (where both labels are mapped to the same label) for the MADLAD formula occurs earlier.

LAD, in contrast to MADLAD, does not recognize an early degenerate case because the implementation
did not add a conditional statement for LAD to mark the degenerate case by setting the value to 1.5; this was
implemented only for MADLAD. Consequently, LAD maintains a consistent error level since both regions are
mapped to the same label.
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Similar to the salt noise case depicted in Figure 4–left, BSM is twice the NHD when NHD is small. However,
BSM fails to detect the degenerate case and responds as if there were a label swap, beginning to decrease–a
typical response observed in less sophisticated metrics. Additionally, BSM is not symmetric due to the ratio of
the object to the array. The object is smaller than the background, causing the peak to shift to the right rather
than being centered, and the background’s larger size influences the noise. NHD still exhibits the previous
linearly increasing trend. Furthermore, when the pepper noise is at its maximum or 100%, the value of NHD is
approximately 0.9. In contrast, with 100% salt noise, NHD is around 0.1. This difference is consistent with the
ratio of the size of the chameleon to the background, which is approximately 10% to 90%.

Figure 4: Comparison of four example metrics for the salt noise scenario (left) and pepper noise scenario
(right). Below the plot, the original chameleon image is shown at the far left, followed by segmentation masks
with progressively increasing noise.

3.2.3 Salt-and-Pepper Noise

This section explores the effects of combining salt and pepper noise at each step. After 10 iterations, 100% noise
has been applied, fully saturating the base segmentation. The noise is applied separately to the background and
foreground, resulting in a complete label swap. This means that all pixels are inverted relative to their initial
state, as illustrated in Figure 5.

The NHD metric fails to capture this label swap because it strictly evaluates the matching of specific labels
without considering their spatial inversion. Consequently, it reaches the maximum value of 1 at the 100% noise
level. Conversely, the distance metrics LAD, MADLAD, and BSM successfully detect this behavior. Notably,
similar to Figure 4–right, MADLAD reaches a degenerate case early, where both labels are mapped to the
majority label. Without this degenerate case, LAD and MADLAD would yield similar outcomes in the binary
case. Due to the gradual addition of noise and the complete inversion of all pixel values, all measures except
NHD exhibit symmetry, with BSM peaking in the middle. Once again, BSM is twice NHD when NHD is small.

3.2.4 Closing and Opening Operations

Although salt-and-pepper noise examples provide insightful demonstrations of the differences between metrics,
they typically do not represent the kinds of errors commonly seen in segmentation tasks. In the upcoming
experiments, we will explore more realistic types of segmentation errors using binary morphological operations,
starting with the closing operation.
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The closing operation in binary morphology involves a sequence of binary dilation followed by binary ero-
sion, resulting in more realistic alterations to the boundaries of the shapes. With each iteration, the footprint of
the closing operations is increased, as shown in Figure 6 at the bottom of the plot for the chameleon’s labeled
array. Conversely, the opening operation consists of an erosion followed by dilation. Like the closing operation,
the size of the footprint increases with each iteration, realistically altering the shape boundaries and mimicking
errors commonly encountered in real-world segmentation tasks.

Both operations result in slight changes in the values from the distance metrics due to subtle adjustments on
the boundary between the background and foreground, as visible in the plot in Figure 6. It can be observed
that LAD, MADLAD, and NHD are all equal to each other. Additionally, since NHD is always less than 0.5 in
these cases, the value of BSM is always twice the NHD, according to Equation 3.

3.3 Evaluating Manual Segmentation Variability

Figure 5: Comparison of metrics under salt and
pepper noise. The NHD metric fails to recognize
label swaps, while MADLAD encounters a degen-
erate case at mid-level noise. BSM performs opti-
mally but is limited to binary labels.

The second set of experiments employs LAD and MAD-
LAD to compare ground truth results obtained from dif-
ferent users. The primary objective of this experiment is
to illustrate the inherent challenges of segmenting real-
world images and to demonstrate that there is no defini-
tive “ground truth” for any given problem. These results
are used to establish reasonable thresholds for the LAD
and MADLAD metrics. These thresholds are crucial
for defining acceptable levels of segmentation error in
the example application detailed in Section 3.5, helping
to determine when a segmentation result is sufficiently
close to these varying ground truths.

This experiment involves a set of three images,
shown in Figure 7, each segmented by six participants
who vary in their experience with manual segmentation.
To ensure consistency among participants, comprehen-
sive instructions were provided on how to install and use
the GNU Image Manipulation Program (GIMP) [29] for
annotating images.

The collected images showcase the variability typi-
cal in manual segmentation, serving as ground truths.
Within these arrays, color values are assigned such that zero represents black and one represents white.

These arrays are overlaid, and the pixel values are aggregated to create ‘sum images’, as illustrated in Figure
8. A pixel value of six at any given point indicates that all participants used white for segmentation at that
location. Conversely, a value of zero indicates that all used black. Values between zero and six denote areas
of disagreement among the participants. For example, if five out of six participants labeled a spot as black and
one as white, the resulting value would be one, effectively highlighting the variation between segmentations.

Figure 8 displays a comparison of segmented images for each of the three photos. Areas of significant
disagreement among participants are highlighted with red boxes in each image.

These findings underscore the complexity involved in defining ‘ground truth’ in image segmentation. There
is no universal standard of ground truth against which machine-segmented images can be consistently mea-
sured. However, manual segmentation data provide a solid baseline for evaluating the accuracy of segmentation
results. In Table 3, the degree of agreement among different manual segmentations is quantified for the ’Bottle’
image, with zero representing a perfect match.

The table is symmetric, as expected, because the distance metric is independent of the order of comparison.
For instance, the metric value when Participant 1 is compared to Participant 2 is identical to when Participant 2 is
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Figure 6: Iterative application of increasingly larger closing operations (left) and opening operations (right)
on the chameleon image. Notice that all the metrics yield similar outcomes, with LAD and MADLAD results
closely aligning with those of the NHD metric. However, the BSM metric shows slightly higher values.

Figure 7: Set of three images to be segmented by experiment participants. Taken from the SEE-Insight Example
Images repository [30].

Table 3: Comparative analysis using the LAD metric for manually segmented ‘Bottle’ images. Values less than
0.0015 are highlighted in bold, indicating a very good fit.

Participant 1 2 3 4 5 6
1 0.0000 0.0025 0.0023 0.0022 0.0023 0.0018
2 0.0025 0.0000 0.0011 0.0011 0.0018 0.0015
3 0.0023 0.0011 0.0000 0.0010 0.0015 0.0013
4 0.0022 0.0011 0.0010 0.0000 0.0014 0.0012
5 0.0023 0.0018 0.0015 0.0014 0.0000 0.0013
6 0.0018 0.0015 0.0013 0.0012 0.0013 0.0000

compared to Participant 1. Furthermore, all entries along the main diagonal are zero, indicating a perfect match
when participants compare their own segmentations against themselves. The tables for ‘Park’ and ‘Mushrooms’
were similar, so we only included the ‘Bottle’ table for brevity.

In the evaluation of manual segmentations, differences in consistency and accuracy among various images
were noted. Excluding the main diagonal entries, which compare arrays to themselves, variations were observed
in the consistency of segmentation among different images:
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Figure 8: Composite images derived from summing pixel color values across six participant-segmented images
for all three scenes shown in Fig. 7. Values of zero (dark blue) and six (dark red) indicate unanimous agreement
among participants. Values between zero and six signify varying degrees of disagreement. Areas of significant
disagreement among participants are highlighted with red boxes in each image.

1. Bottle: Out of the 30 non-diagonal cells, 14 displayed a distance metric value less than 0.0015, indicating
a very close match. The average distance metric for these cells was 0.0013, showcasing the highest
consistency in segmentation among participants for this image set.

2. Park: This image set showed slightly lower consistency, with 12 out of the 30 cells having a distance
metric less than 0.0015. The average value for these cells was 0.0017, suggesting a decent, but slightly
less consistent, segmentation quality compared to the ‘Bottle’ image.

3. Mushrooms: This set did not have any cells with a distance metric under 0.0015. The average value
across the 30 non-diagonal cells was 0.0089, indicating the lowest consistency. The busy background
of this image likely made it difficult for participants to consistently determine the edges of the subject,
leading to the highest variation in segmentation results.

These findings underscore the impact of image complexity on manual segmentation tasks. Images with
clearer and less cluttered backgrounds, like ‘Bottle’, tend to yield more consistent segmentations, whereas those
with busier or similarly-colored backgrounds, such as ‘Mushrooms’, present greater challenges in achieving
uniform segmentation outcomes.

Ultimately, manual segmentation is not only time-consuming but also yields variable ground truths that
depend on the individual user and the specific image in question. The collected data provides a baseline for
evaluating the consistency between manually segmented images, which can be utilized to establish distance
metric requirements for automated segmentation tools.

3.4 Evaluating Segmentation Metrics Against Human Judgment

This section evaluates the effectiveness of four segmentation metrics—LAD, MADLAD, BSM, and NHD—as
introduced in Section 2.2, in reflecting human judgments of segmentation closeness. Since all segmentation
metrics inherently exhibit biases that can influence their outcomes, identifying a metric that accurately mirrors
human evaluative processes is crucial. To achieve this, the experiment employs the Elo rating system [31], a
method traditionally used in chess to rank competitors based on pairwise comparisons.

The experiments were conducted using image segmentations of three photos displayed in Figure 7. Team
members served as evaluators, rating these segmentations to determine which metrics most closely resemble
human judgment. A linear regression analysis was utilized to compare the distances derived from the metrics
with those derived from human ratings, aiming to pinpoint the metric that best approximates human perceptual
accuracy.

The experimental platform was developed in Python, using the Tkinter library [32] for graphical user in-
terface (GUI) creation and the Python Imaging Library (PIL) [33] for image manipulation. The setup was
designed to facilitate the direct comparison of image segmentations by human participants.
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Images were categorized into three distinct scenes: a park, mushrooms, and a water bottle. For each category,
original images and their segmentations were stored in separate folders. A specific function excluded original
images from the selection, loading only segmentations for comparison. Each segmentation was then paired
with every other segmentation within its category to form unique evaluation pairs.

The GUI, as shown in Figure 9, displayed the original image at the top of the window for reference, with
pairs of segmented arrays presented side by side below it. Participants indicated their preference by clicking on
the segmented array they believed most closely matched the original image. Each participant’s selection within
the array pairs was recorded, incrementally building a choice matrix. This matrix represented the collective
judgments of the participants across all array pairs within each category and it was exported to a CSV file at the
end of the experiment.

Figure 9: Experimental GUI
setup: This interface displays
the original image at the top
for reference, with pairs of
segmented arrays shown side
by side below. Participants
select the segmented array
they perceive as most closely
matching the original image.

The Elo rating system was adapted to evaluate image segmentation qual-
ity. This system normalized the data and provided a comparative rating for
each segmented array based on pairwise comparisons. Each array started
with an initial rating of zero, which was adjusted according to the outcomes
of the pairwise comparisons. Adjustments were made using a constant fac-
tor (K = 32), resulting in a final set of Elo ratings for each array that
reflected its relative quality as judged by the participants.

Additionally, distance matrices for each array category were calculated
using the four metrics previously mentioned: LAD, MADLAD, BSM, and
NHD. Each of these metrics is designed to quantitatively assess segmen-
tation quality by quantifying the dissimilarity between every pair of seg-
mented arrays.

To determine the alignment between human judgments (as represented by
Elo rating-derived distances) and quantitative assessments (as represented
by metric-derived distances), linear regression analyses were conducted.
These analyses evaluated the correlation strength and significance between
the two sets of distances, thereby identifying which metrics most closely
approximated human evaluation of the segmentations.

Figure 10 displays the original ‘Mushrooms’ image along with the rank-
ings of its segmentation array quality as determined by human participants
using the Elo rating system. In the figure, the segmentation positioned next
to the original image is the “winner of the Elo tournament,” indicating it
emerged as the highest ranked based on human evaluations and is consid-
ered the best segmentation. Conversely, the segmentations on the far right are ranked as the worst, with all
labeled arrays systematically ordered from best to worst moving left to right.

An important observation is that there are more immediately distinguishable differences between the segmen-
tation sets for the ‘Park’ and ‘Mushroom’ images, whereas the differences between the ‘Bottle’ segmentations
are more subtle. This subtlety could influence the relationship between human perceptions and quantitative
evaluations.

Figure 10: The ‘Mushrooms’ image at far left and the ranking of its segmentations by quality. Segmentations
are displayed from best (left) to worst (right) based on human evaluations. Note that the different colors
represent different labels used by different people performing the segmentation.
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The linear regression analysis conducted on the distance measurements derived from both human judgments
(Elo ratings) and the four distance metrics (MADLAD, LAD, BSM, and NHD) revealed varying degrees of
correlation across the three images: ‘Park’, ‘Mushrooms’, and ‘Bottle’. A stronger and more statistically
significant positive correlation between the metric-derived distances and the Elo-derived distances indicated a
closer alignment with human judgment.

In regression analysis, the R2 value, or coefficient of determination, quantifies the proportion of the variance
in the dependent variable that is predictable from the independent variables. Ranging from 0 to 1, a higher R2

value indicates a better fit, suggesting that the model explains a greater proportion of variance. It provides an
indication of goodness of fit and, therefore, a measure of how well unseen samples are likely to be predicted by
the model. The p−value, on the other hand, tests the null hypothesis that the coefficient is zero (no effect). A
low p−value (< 0.05) indicates that we can reject the null hypothesis, typically suggesting the model findings
are statistically significant and not due to chance. Conversely, a higher p−value suggests less confidence in
the model’s predictive power regarding the specific variable’s influence. The R2 values and corresponding
p−values for each of the four metrics with respect to each of the three images are displayed in Figure 11.

Figure 11: The R2 and P -values for each distance metric across the three image categories. Higher R2 values
indicate better correlation with human judgments, showing stronger alignment with human perception. Lower
P -values suggest statistically significant correlations, indicating the results are not due to chance. A logarithmic
scale is used on the y-axis for better visibility.

For ‘Park’, MADLAD distances exhibited a slight but statistically significant positive correlation with Elo
distances, indicated by an R2 of approximately 0.16 and a p−value of 0.004. This suggests a real, albeit weak,
relationship where changes in MADLAD distances somewhat predict changes in Elo ratings. LAD distances
displayed a somewhat stronger positive correlation with Elo distances, with an R2 of approximately 0.23 and
a p−value of approximately 0.0004, indicating a higher correlation with human judgment. The correlations
between distances from BSM and NHD and Elo distances were weaker, with both metrics yielding an R2 of
approximately 0 and p−values of 0.73 and 0.70, respectively, suggesting no significant relationship.

For ‘Mushrooms’, MADLAD distances showed a weak but statistically significant correlation with Elo dis-
tances, with an R2 of 0.10 and a p−value of approximately 0.02. This indicates a slight predictive relationship
where MADLAD distances are somewhat indicative of Elo ratings. LAD distances, however, demonstrated a
considerably stronger correlation with Elo distances, evidenced by an R2 of 0.49 and a p−value of approxi-
mately 0, reflecting a more robust alignment with human judgments. Similar, the correlations for NHD and
BSM were weaker, with R2 values of 0.01 and 0 and p−values of approximately 0.53 and 0.78 respectively,
indicating negligible relationships.

For ‘Bottle’, MADLAD distances demonstrated a weak positive correlation with an R2 of 0.06 and a
p−value of approximately 0.08, suggesting a near-significant relationship where changes in MADLAD dis-
tances slightly predict changes in Elo ratings. LAD showed a higher correlation with human judgment, evi-
denced by an R2 of 0.15 and a significant p−value of approximately 0.004. NHD continued to show a negligible
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correlation (R2 of 0), while BSM displayed a slight positive correlation with an R2 of 0.16 and a significant
p−value of approximately 0, suggesting a slight predictive relationship with human ratings.

Overall, the LAD distance metric demonstrated the most consistent positive and statistically significant cor-
relation across all three images, indicating the best correlation with human judgment, followed by MADLAD.
In contrast, neither NHD nor BSM distances consistently correlated with the Elo scores representing human
judgment for the segmentations of ‘Park’ or ‘Mushrooms’. However, BSM distances showed a better correla-
tion when applied to the ‘Bottle’ segmentations. These findings suggest that the LAD and MADLAD metrics
represent an improvement over BSM and NHD in aligning with human perceptions of segmentation differences.

It is important to recognize potential limitations in the human judgment reflected by the Elo scores, particu-
larly in the perception of differences in the quality of the ‘Bottle’ image segmentations. These segmentations
tended to be more challenging to distinguish from one another compared to the other two images, which could
affect the reliability of the judgments.

Given the subjective nature of human judgment of image segmentation quality, conducting further evalua-
tions could enhance the robustness of these findings. It would be valuable to repeat the experiment with more
participants, potentially including the same participants at different times, and to expand the selection of im-
ages. This would help to confirm the consistency of the results and provide a more comprehensive assessment
of the segmentation metrics’ performance.

3.5 Application of LAD and MADLAD in Genetic Algorithm

The final experiment will explore the application of LAD and MADLAD metrics in a “real world” scenario,
designed to assist scientific researchers in image understanding workflows such as point selection, region seg-
mentation, and counting. The goal of SEE-Segment, a project at SEE-Insight, is to create a tool that transcends
traditional annotation systems [23, 24]. As scientists annotate their images, this tool will leverage their annota-
tions from the very first image to navigate the “algorithm space” using a genetic algorithm. This process aims
to identify candidate algorithms that align with their specified workflows. If a suitable candidate is found, the
tool will suggest this algorithm to the researcher. At a minimum, using such a tool will require no more time
than manual annotation, providing researchers with a valuable annotated dataset for further scientific use or
integration into traditional ML systems. Optimally, the tool could identify effective algorithms automatically,
potentially accelerating parts of the annotation process, thus saving time and enhancing the overall research
workflow.

In this context, LAD and MADLAD metrics guide a genetic search algorithm through a high-dimensional,
non-differentiable search space of segmentation algorithms and their hyper-parameters. To demonstrate the
strengths and limitations of these metrics, a variety of segmentation solutions are presented in Figures 12, 13,
and 14. These solutions were selected to illustrate the approach’s capabilities and limitations rather than the
quality of individual solutions.

Figure 12: Segmentation quality spectrum: Labled Arrays are ordered from left to right, from the poorest to the
best segmentation quality based on LAD and MADLAD metric values, as demonstrated on an image from the
Sky dataset [21]. The ground truth is displayed on the far right for reference. Each labeled array’s color variation
reflects the number of distinct regions identified by different segmentation algorithms. A robust distance metric
should yield consistent evaluations irrespective of the labeling variations used in the segmentations.
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Figure 13: LAD and MADLAD metrics were applied to segmentations of an image from the KOMATSUNA
dataset [22], demonstrating segmentation with a binary label array. The segmentations are ordered from the
least to the most accurate, ending with the ground truth displayed as a reference on the far right.

Figure 14: LAD and MADLAD metrics were applied to segmentations of an image from the KOMATSUNA
dataset [22], here using a multi-label array. The segmentations are arranged from the least to the most accurate,
with the ground truth positioned as a reference on the far right.

Figure 12 displays examples of LAD and MADLAD measurements applied to various segmentations of an
airplane against the sky from the Sky dataset [21]. The labled arrays are ordered based on their distance metrics
from the highest on the left, representing the poorest segmentations, to the lowest on the right. The rightmost
array, which are identical to the ground truth, achieve LAD and MADLAD values of zero, indicating a perfect
match.

Notably, the labled array with the second lowest LAD value (second from the right) contains numerous
regions, a stark contrast to the ground truth that consists only of two simple regions: object and background.
This results in a misleadingly low LAD value, which might suggest a high-quality segmentation despite its
impracticality for certain applications. The presence of numerous regions, though reducing the distance metric,
might not align with specific application needs, demonstrating the importance of a metric that yields consistent
results regardless of label variations.

The MADLAD metric offers a potentially more suitable solution by providing results with a comparable
or reduced number of regions. This adjustment better aligns with practical needs where fewer, more clearly
defined regions are advantageous, demonstrating MADLAD’s relative adaptability to the context of the task.

Figure 13 illustrates LAD and MADLAD measurements applied to an image from the KOMATSUNA dataset
[22], with the binary ground truth positioned at the far right. The labled array’s are ordered from highest to
lowest metric values, starting with the poorest examples on the far left and culminating in the ground truth.
Notably, a very poor segmentation (far left under the LAD metric) shifts towards the right under MADLAD.
This shift occurs because, despite the low quality of the segmentation, MADLAD favors solutions with a similar
number of regions to the ground truth, showcasing its bias towards matching region counts.

Figure 14 presents results from the KOMATSUNA dataset [22], this time using a multi-label ground truth.
The labeled arrays are organized from the poorest to the best segmentation, concluding with the ground truth
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displayed on the far right for reference. While no solution perfectly matches the ground truth, the visible
progression in segmentation quality suggests that many of the results would be adequate for various practical
applications.

4 Discussion and Conclusion

The development of effective and informative distance metrics is essential for advancing the automated search
and evaluation of segmentation algorithms. In this study, we introduced two novel metrics, LAD and MAD-
LAD, specifically designed to address the challenges associated with multi-label image segmentation. These
metrics effectively overcome the limitations of existing metrics, such as sensitivity to label permutation and
naming, which often result in inaccurate assessments of segmentation quality. While we acknowledge the in-
herent biases in any metric, LAD and MADLAD enable a more accurate quantification of the performance
of segmentation algorithms within our search space, tailoring the evaluation to specific image segmentation
problems.

Our experiments demonstrate that LAD and MADLAD provide a robust framework for quantifying the
performance of segmentation algorithms. Both metrics show strong correlations with human judgment, partic-
ularly in their ability to assess consistency across diverse segmentation scenarios. LAD offers a straightforward
approach to measuring segmentation accuracy, while MADLAD excels at adapting to the number of regions
in segmentations. This adaptability aligns more closely with human evaluative standards and practical needs
where the segmentation quality is influenced by the structure and complexity of the labels.

This research underscores that while no metric perfectly matches human judgment, striving for metrics that
closely emulate human-like discernment is crucial, especially in complex scenarios such as those in multi-label
segmentation. MADLAD’s focus on region counts proves particularly beneficial in these cases.

The primary objective of this work was to develop metrics that can be integrated into a genetic algorithm
framework to facilitate the automated search through segmentation algorithms by quantifying each algorithm’s
performance relative to specific segmentation challenges. LAD and MADLAD fulfill this objective by provid-
ing a reliable fitness function that is both computationally efficient and tailored to the specific requirements of
multi-label segmentation tasks. This alignment ensures that the metrics effectively guide the search process,
helping to identify segmentation algorithms that are most appropriate for the given application.

Future applications of LAD and MADLAD aim to streamline scientific research workflows by reducing the
time spent on manual annotations and enhancing the precision of automated systems. To expand these metrics’
utility, further research should explore a broader range of images and segmentation challenges, testing these
metrics under varied conditions. Additionally, refining these metrics to minimize biases and better align with
practical segmentation needs remains a priority. Engaging more evaluators in the segmentation assessment
process will enrich our understanding and help fine-tune these metrics for optimal human perceptual accuracy.
Moreover, these metrics will also be employed to assess the sensitivity of segmentation algorithms, measuring
the extent to which output variations correspond to changes in input hyper-parameters.

In conclusion, LAD and MADLAD represent a significant advancement in the computational assessment of
image segmentation. They provide powerful tools for researchers and practitioners to enhance the efficiency
and accuracy of image analysis, marking a promising direction for future developments in image processing
technology.
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