
Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

An Efficient Deep Learning based License Plate Recognition for
Smart Cities

Swati, Shubh D. Kawa, Shubham Kamble, Darshit Desai, Pratik H. Karelia and Pinalkumar Engineer

Department of Electronics Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
Received 16th of May, 2024; accepted 17th of September 2024

Abstract

With the high load of vehicle traffic, tracing and capturing vehicular information over traffic surveillance
on roads, parking, or for safety concerns is tough. In the proposed method, a deep learning-based object
detection model, EfficientDet-D0, has been trained with the custom dataset for license plate detection and
used an optical character recognition model, Tesseract. In the proposed method, we have used an improved
license plate extraction algorithm, which reduces false localization followed by character recognition in
a pipeline manner. We have also explored the model quantization method to compress the model with
reduced precision for efficient edge-based deployment for an end application. In the proposed work, we
have dedicated our study to Indian vehicles, evaluated the performance with standard datasets like CCPD and
UFPR, and have achieved 97.9% in license localization and 95.15% in end-to-end detection and recognition,
respectively. We have implemented it on Raspberry Pi3 and NVIDIA Jetson Nano devices with improved
performances. Compared with state-of-the-art, we have achieved 2×, 3.8×, and 2.5× in CPU, GPU, and
edge platform, respectively.

Key Words: Deep learning, License plate detection (LPD), Optical character recognition (OCR), Smart
surveillance, Edge intelligence, Model quantization

1 Introduction

Due to increasing traffic load, keeping track of all the vehicles is getting very difficult. If we have an intelligent
solution to track vehicular information that is accurate and fast, then it could be a great problem solver. With
the advancement in deep learning, we can extend to an implementation that can be helpful in a real-world
use case and could be a potential solution. A license plate recognition (LPR) is an image processing task
that first localizes the number plate in a vehicle and then extracts the characters, which assists in determining
the vehicle’s details. Possible use cases include traffic surveillance, automatic toll collection booths, vehicle
identification, parking management systems, traffic law enforcement, criminal investigation, etc. The practical
application of automatic license plate recognition (ALPR) extends notably to intelligent transportation systems
(ITS), offering valuable assistance in the identification of potential security vulnerabilities and the enhancement
of automation processes [1]. Despite the pervasive installation of CCTV cameras across diverse locations, the
reliance on human monitoring for recording vehicle ingress and egress persists. Integrating ALPR systems is

Correspondence to: d20ec012@eced.svnit.ac.in, swati.st008@gmail.com

Recommended for acceptance by Angel D. Sappa
https://doi.org/10.5565/rev/elcvia.1917

ELCVIA ISSN:1577-5097
Published by Computer Vision Center / Universitat Autònoma de Barcelona, Barcelona, Spain

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 51

(a) Challenges (b) Proposed solution

Figure 1: Challenges in current deep learning based license plate detection and proposed solution

a viable solution, markedly reducing the operational burden on service personnel, mitigating human-related
challenges, and eradicating associated errors. By 2030, the global automatic number plate recognition (ANPR)
market is expected to reach new heights, with an increased focus on data analytics and reporting for urban
planning and traffic optimization. The ANPR technology will be an integral part of smart cities, contributing to
a more connected and efficient urban environment [2].

Transitioning from cloud-based solutions to edge-based computation improves latency and power and will
help in making real-time decisions in an efficient way [3][4]. It will be pivotal in effective traffic management
with various other integrated solutions like parking facilities, vehicle access control, real-time data analytics,
and many more [2]. In a real-time environment, many environmental constraints exist, such as poor lighting,
bad weather, vehicles blocking the clear view of other vehicles, obstructing the license plate (LP) visibility,
high-speed cars, and many more [5]. Current trends majorly deal with cloud-based solutions where the data is
constantly shared to and from the mounted camera to the servers for computation [6]. The camera is stationed
at a specific location and elevation that might interfere with image acquisition in certain adverse environmental
conditions. It is easier to alleviate such scenarios in deep learning-based solutions as we need to enrich the
dataset by incorporating diverse situations. Although there are several convolutional neural networks (CNN)
based solutions, they lack a specific extraction algorithm to reduce false license plate detection (LPD) [7] [8] [9].
We have observed two existing solutions: (1) direct LP detection and (2) vehicle detection followed by LP
detection being exercised, which fails to localize the LP in challenging scenarios. Our proposed implementation
explores the possibility of LP and vehicle detection from a single model followed by an extraction algorithm to
reduce false LP localization, and the same can be visualized in Figure 1. Here, for object detection, EfficientDet-
D0 [10] was used as it is a lighter model, and our objective is to proceed to edge computation later. After LP
detection, the localized LP was sent to a license plate recognition (LPR), which performs optical character
recognition (OCR) to recognize the present characters. Here, we wanted to explore another candidate for LP
detection. Currently, most of the implementation circles around YOLO [11], YOLO-tiny [12], and MobileNet
[13] etc. The main contributions of this work are as follows:

1. Exploring the suitability of another object detection model, EfficientDet-D0 for LPD targeting edge-
based implementation.

2. Proposing a novel LP extraction algorithm for adverse corner cases.

3. An end-to-end smart traffic management system solution from LP localization to recognition.

4. Model quantization technique exploration to achieve hardware-friendly models.

5. Edge-based deployment on Raspberry Pi3 with camera interface and NVIDIA Jetson Nano board.

52 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

1.1 Organizational structure of the article

Section 2 discusses the related work and background of different methods to perform LPD. Section 3 discusses
the adopted methodology and how DL-based methods work. In the following sections, Section 4 and Section 5,
the experimental setup with the adopted extraction algorithm and respective results are illustrated respectively.
Section 6 concludes the study with future work.

2 Related Work

ALPR technique was exercised long before DL methods came into existence [6]. The earlier solution exten-
sively used traditional image processing techniques like edge detection, contour methods, etc. Several existing
solutions still practice conventional methods in smart city projects, traffic management and access control,
smart parking systems, and many more applications.

2.1 Conventional Methods

It is evident that detecting a license plate and character recognition are part of image processing. The problem
existed long before the CNN-based solutions came into practice. Various traditional method-based implemen-
tations have been done to perform LP detection and recognition at toll booths and other traffic surveillance
systems. The conventional methods leverage the various information provided by morphological operations,
contours, and various pre-processing operations to get a neat and error-free image [14].

Zied Selmi et al. [15] had shown that there is a need for certain pre-processing of images to be classified as
plates/not plates and then implemented a CNN to extract the characters respectively. They performed several
pre-processing steps such as morphological operations, contour detection filters, and a classifier to detect the
image as plates/not plates, followed by recognition of characters. In [16], to localize a license plate in an image
edge detection method has been explored. In [17], the authors have performed LP detection using morpho-
logical operations and a CNN model is used for character recognition. Another approach has been discussed,
which uses blur and de-blur filters to eliminate noise in the image, which is then used for LP localization; the
processed image is further fed to the character recognition, which reduces the error in recognition [18]. Feature
extraction methodologies like scale-invariant feature transform (SIFT) [14], the histogram of oriented gradient
(HOG) [19], and the local binary pattern (LBP) techniques are discussed in [6] for vehicle identification.

2.2 DL-based Methods

Recent developments in artificial intelligence have led to major improvements in computer vision tasks. Var-
ious deep learning models can perform object classification, detection, localization, and recognition. A deep
neural network (DNN) consists of several stacked layers of convolution, max-pooling, and activation function
operations. DNNs extract features layer-wise and combine low-level features to form high-level features, which
can find distributed expression of data [20].

The LP detection can be achieved with a DNN model by training with a custom data set to detect a license
plate region in an image. Region-based convolution neural network introduces a method to attain object de-
tection on proposed regions to localize and detect objects [21]. Faster-RCNN implements a region proposal
network that is utilized to generate detection proposals. With the introduction of single shot detectors (SSDs),
there was no need for region proposal, and the object detection was done through single pass, which is adopted
by various object detection models like YOLO-tiny [12], MobileNet [23] and has been utilized by multiple LP
detection implementations [15] [7]. Various comparisons with object detection models have been conducted
for the LPD phase, and for the LPR, a custom RPNet model was developed, which achieves an AP of 94.5%
by authors in [7]. However, their dataset only consists of close-up images of cars’ front or rear portions, which
is difficult to localize in real-time. Here, training was done on synthetic data, then fine-tuning was performed

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 53

Table 1: Standard object detection models and their parameters

Model Methodology Dataset mAP Size time

R-CNN [24] two stage detector VOC 0.54 500 MB 0.02 fps
Fast R-CNN [25] two stage detector VOC 0.684 145 MB 0.5 fps
Faster R-CNN [26] two stage detector VOC 0.704 75 MB 5 fps
Feature pyramid Network [27] two stage detector COCO 0.59 - 6 fps
Single Shot Detector [28] single stage detector VOC 0.76 - 59 fps
MobileNet v2-SSD [23] single stage detector VOC 0.756 32 MB 21 fps
YOLO [11] single stage detector COCO 0.57 140.69B 20 fps
YLOv3-tiny [12] single stage detector COCO 0.33 35 MB 220 fps
EfficienDet-D0 [10] single stage detector COCO 0.34 18 MB 83 fps

on accurate data to achieve higher accuracy. In [9], authors first performed vehicle detection, followed by
LP detection, and then character recognition with 93.53% accuracy. In [22], Charan and Dubey developed a
methodology for detecting two-wheeler vehicles with Yolo-v4 with Tesseract for number plate detection and
recognition, respectively. In their proposed work, they have achieved 94% accuracy for number plate detection.

In a study by Wang et al., in [6], they have recommended deep neural networks (DNNs) after comparing
them with traditional machine learning techniques. DNNs incorporate multiple hidden layers to learn sophis-
ticated features, enhancing their generalization capacity. This enables impressive performance in the targeted
re-identification task and extends their applicability to diverse computer vision challenges, including image
classification, object detection, semantic segmentation, and video tracking. Consequently, researchers have
increasingly focused on exploring deep learning approaches for vehicle re-identification in recent years.

After analyzing the existing solutions, we can understand that the conventional methods (non-DL methods)
are highly efficient but constrained by a lot of pre-processing and post-processing to make them suitable for
performing license plate detection and recognition. Thus, manual intervention is a requirement for performance.
Image analysis needs to be done to reduce noise, blur, and contrast correction. If failed, it could lead to improper
results. These methods are restricted to certain preordained environmental conditions. Here, DL-based methods
have an edge over non-DL methods as the models are trained once rigorously with large, diverse datasets
consisting of images in all conditions, i.e., low-light exposure, tilted, flipped, different contrast, and many
more. The trained model is data-driven, so it’s upon us to provide assorted data so that the trained model makes
accurate decisions in any unanticipated situations. However, we cannot completely rely on the DL-based model
due to some environmental constraints like rain, illumination, and several other factors. In this work, we have
developed an algorithm to alleviate corner cases and avoid false detection of license plates.

We have seen models used for license plate detection as object detection models. Popular choices are
RCNN [24], YoloTiny-v3 [12] used for performing license plate detections in [21] [8] models implemented
after custom training on LP dataset. Here, we are exploring the possibility of a different network, Efficient-
Det [10], a family of object detectors recently published by Google Brain team. It is observed in the findings
that the EfficientDet model performs efficiently in training, with reasonable accuracy and latency with smaller
datasets as well [10]. The performance metrics of several other object detection algorithms are logged in Ta-
ble 1 comparing with EfficientDet-D0. In this work, we explore EfficientDet-D0 as our LPD model to localize
the license plates in a vehicle.

3 Proposed Methodology

From the above discussion, the dominant methodologies are DL and non-DL-based implementation, out of
which we can come to an understanding that DL-based methods have the edge over the conventional for ANPR,
as they are trained for all diverse cases like poor illumination, disoriented vehicles, weather conditions, etc.

54 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

3.1 Object Detection Revisited

Object detection is a technique of localization and prediction of individual objects in an image or video. Var-
ious applications can be targeted using object detection techniques such as face recognition, traffic detection,
vehicle access control, emotion recognition, autonomous driving, and more [29]. The major underlying task for
object detection is to localize and classify the object with existing classes. We can assume an object detection
method is the next stage task of a classification algorithm. There are two main kinds of frameworks for object
detection: two-stage and single-stage detectors. First, it follows a traditional method where region proposals
are generated, followed by classifying the generated region proposals into different existing categories. Sec-
ond, it associates detection with a regression problem where a backbone CNN architecture is used for feature
extraction and later passed through a segment to provide bounding boxes and categories. The main difference
between the two methods is that the latter skips the region of interest (ROI) proposal and performs prediction in
a single pass. Two-stage detectors are more accurate but get very bulky as two separate networks are connected
back to back, hence the higher turnaround time. Table 1 describes different types of object detection models
based on methodologies and their performance metrics. We can observe that two-stage detectors achieve better
performance but at the cost of model size and speed. However, single-stage detectors offer faster response time
with reduced model size and slightly compromised performance. One can decide what fits their criteria as per
their requirement.

3.2 EfficientDet

EfficientDet is a comparatively newer network in object detection which proposes several key optimizations to
improve efficiency. A bi-directional feature pyramid network (BiFPN), which allows easy and fast multi-scale
feature fusion along with a compound scaling method that uniformly scales the resolution, depth, and width
for all backbone, feature network, and box/class prediction networks simultaneously, is proposed [10]. The
authors have discussed the implication of implementing bulkier models with larger parameters in real-world
applications like self-driving cars, robotics, and other resource-constrained scenarios where it gets very tedious
to infer with such a high degree with computations and parameters. This architecture achieves comparable
accuracy with reduced parameters and latency. There are several models available in EfficientDet family D0-
D7 varying in degree of computation and memory size. We have opted for EfficientDet-D0 due to its smaller
memory size and floating point operations (FLOPS) [10].

Also, when targeting a real-world application, gathering a larger dataset to train the network with better
accuracy and efficiency is a challenge. Since this model is trained with 300 epochs, it has efficient learned
parameters, which are also utilized in transfer learning with smaller custom datasets. It is suggested that
ImageNet [31] checkpoints give better training for object detection even with smaller datasets incorporating
several augmentation techniques, which improve accuracy and efficiency. We can refer to Table 1, illustrating
standard object detection architectures and their model parameters. Based on this, we can make an informed
decision on selecting the best model. It is evident that there are several other networks with better parameters.
However, we had isolated this specific model due to its smaller computation and model size with good speed.
Our main intention is to have an edge implementation for real-time applications. So, our solution is for a
resource-constrained system.

3.3 Proposed Implementation

Usually, in any classic ANPR solution, the standard steps are image capture, number plate localization, and pre-
processing of the extracted plate, followed by character recognition. Our proposed block diagram is presented
in Figure 2, which shows an end-to-end implementation of ALPR where first, the image acquisition is per-
formed with the mounted camera hardware, after which the detection model performs localization of vehicles
and license plates. We have explored and trained a combination of detection models where only single-class

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 55

 Image
aquisition

Vehicle and License
 Localization

SN66XMZ

Extraction
algorithm

 Image
Pre-processing

Extracted LP
Segmentation of
 LP characters

LP character
 recognition

Detection Model

License Plate Detection (LPD) Licese Plate Extraction

Licese Plate Recognition (LPR)

Figure 2: Proposed block diagram of our automatic number plate recognition

and two-class (vehicle and license plates) detection techniques are followed by an algorithm to verify the ascer-
tainment of the final prediction. Next, the localized LP is extracted and followed by a pre-processing algorithm
consisting of traditional image processing techniques to remove noise, channel conversion, and binarization to
help in a better perception of characters to perform OCR. The pre-processed image is passed through the OCR
network, which extracts characters present in LP and stores them for further tasks.

3.3.1 License Plate Detection and Extraction

In Figure 2, the proposed methodology is illustrated. After image acquisition, the image is fed to an object
detection model, which performs localization of the vehicle and license plate, respectively. Based on the above
discussion, the detection model finalized is EfficientDet-D0 due to its smaller size, faster response time, and
efficient training with a smaller dataset. We have proposed a novel LP extraction algorithm to ensure accurate
LP localization.

As discussed in previous sections, we have performed an analysis with training models in three scenarios.
Our main goal is to avoid any false detection of LP, which is used for further processing. The standard output
of an object detection model is the coordinates of the detected object as a bounding box and a label with an
accuracy score. We have trained and evaluated the solution in three different ways, and the same is illustrated
in Figure 3 and described below:

1. Single model performing only LP detection
The model here is trained to detect license plates only. We have witnessed a couple of corner cases and
false predictions with license plates in constraint scenarios like reflection, blurry images, and other cases.
So, we selected combining vehicle/car detection with LP detection to see if this alleviates the problem.

2. Two models performing only vehicle and LP detection respectively
Here, two models are trained separately with single prediction labels, i.e., license plates and vehicle/car,
respectively. Again, the results are passed through the extraction algorithm to get the final LP detection.

3. Single model performing vehicle and LP detection (2 classes)
Here, a single model is trained with two classes to predict, i.e., license plates and car/vehicle, respectively.
After performing the object detection algorithm, the results are passed through an extraction algorithm
to suppress false detection.

56 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

ABC - 123 ABC - 123

Image Acqusition LPD model LP detected LP extraction Extracted LP

ABC - 123 ABC - 123

Image Acqusition Car Detection car detection
LP extraction
 algorithm Extracted LP

ABC - 123

LPD model LP detected

ABC - 123 ABC - 123

Image Acqusition
 Car + LP
detection model car + LP

detection
LP extraction
 algorithm

Extracted LP

(a) Single detection model performing LP detection only

(b) Two detection models performing vehicle and LP detection in a sequential manner

(c) Proposed single detection model performing vehicle and LP detection in a single pass

Figure 3: Different scenarios of license plate detection and extraction

After the Car + LP detection model, we receive multiple bounding boxes (BBs) for cars and LP in a single
pass. We need some mechanism for efficient localization of both vehicle and LP. The novel aspects of our
proposed extraction algorithm:

• Categorizes distinct bounding boxes associated with vehicle and LP on the basis of score

• Establishes a link between bounding boxes of LP and vehicle for effective localization

• Generates plausible bounding box pairs for (vehicle, LP) followed by LP extraction algorithm

• Algorithm 1 highlights the process of extraction where inputs are bounding box pairs for (vehicle, LP)
and the input image

• Post LP extraction, further processing for LPR is initiated

Algorithm 1: Proposed extraction algorithm
Data: Input image
Result: Extracted LP
while getting detections do

if detected LP coordinates ⊂ detected vehicle coordinates then
extract LP from image for further processing

end
end

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 57

Gray Conversion
 LPR result = 'SN66XMZ'

Binarization
 LPR result = 'SN66XMZ'

Dilation
 LPR result = 'SN66XHZ'

Canny Edge Detection
 LPR result = 'SiGe'

Figure 4: Different pre-processing techniques for OCR and respective extracted characters from license plates

3.3.2 License Plate Recognition (LPR)

License plate recognition (LPR) comes under the image processing technique commonly known as optical
character recognition (OCR). It is a method where the text is recognized in a digital image. This technique
is vastly used in document analysis, where texts are recognized from scanned copies of hard documents and
processed for further analysis. We use an open-source OCR engine here, Tesseract [34]. It is a C-based package
invoked using the PyTesseract command in the Python environment. PyTesseract or Python-Tesseract is a
python-based wrapper for the C-based Tesseract OCR engine, which makes it easier to work within the same
environment. We have performed a combination of pre-processing steps for efficient OCR. With Tesseract,
some several other conditions and parameters enable the tool to read the image and convert the recognized
characters into text, string, etc.

Pre-processing techniques in OCR
Pre-processing techniques are necessary for OCR, as, in general, the image is binarized before performing OCR;
minor deviations in an image could lead to erroneous recognition. Several techniques and other techniques are
available that assist in better OCR; some of them are described here and illustrated in Figure 4. RGB scale to
grayscale conversion where 3, 8-bit channels input are converted to the single 8-bit channel for better readability
of the LP. Binarization is where the 8-bit channel is converted to 1-bit containing only 0’s and 1’s in the
image with some thresholding operation to eliminate extra noise and discrepancies. There are morphological
operations that add or remove pixels from boundaries called dilation or erosion, respectively. These operations
are implemented to modify the geometric structure in the image and aid the further decision process. Several
other pre-processing techniques like gaussian blur, edge detection, gamma correction etc perform pixel-level
manipulation to ensure correct recognition.

4 Experimental Setup

Both LPD and LPR models have been trained on CPU with processor AMD Ryzen 7 6800H with GPU 4 GB
GeForce RTX 3050 graphics and 16 GB RAM, respectively. TensorFlow deep learning framework version
2.10 was used in the back end, and the entire scripting was done with Python 3.9. Later, the models were
converted and quantized with TensorFlow-Lite, and inference was evaluated on various platforms. For edge-
based deployment, Raspberry Pi3 and NVIDIA Jetson Nano were used, and the results and observation of all
the above experiments are logged in Section 5.

4.1 Dataset Preparation

The entire ANPR solution combines two tasks: detection and recognition. The dataset was gathered for both
learning tasks. For LPD, the gathered dataset for training was a combination of the Indian vehicle dataset [35]
and a combination of UFPR [9] and the CCPD dataset [7], which were around 2000 in total. The EfficientDet-
D0 training algorithm automatically applies several augmentation methods like flipping, rotation, and transfor-
mation techniques like translation, scaling, brightness adjustments, noise addition, etc. The discussed datasets
are standard and open source, with some being licensed and provided for research. We used 180 images from
the same dataset combination for testing and evaluated the performance measures/metrics. Further, data is
annotated with labelImg [30] software to produce an .xml file with the label and bounding box coordinates
related to individual images, respectively. The entire dataset was split into a 75:25 ratio for the training and

58 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

TensorFlow models
 32-bit float

Custom dataset

Pre-trained network
 architecture

training

Tensorflow
framework

export/save Frozen graph
 .pb file

TensorFlow - lite
 converter

Edge supprted
 (.tflite model)

MCU/ Edge-based
 deployment

real- time inference

Post - Training
Quantization

t model conversion

Figure 5: Model Conversion steps for Edge-based deployment

testing phase while training the LPD model. Later, the same trained models were evaluated with entirely dif-
ferent annotated datasets to compute and compare the evaluation performance metrics. Here, for LPD, we have
developed an enhanced extraction algorithm to double-check the presence of the license plate in a vehicle to
reduce false localization.

4.2 Edge-based Deployment with TensorFlow-Lite

TensorFlow-Lite or TF-lite is an open-source deep learning framework for edge-based inference. It provides
tools to run trained models on embedded platforms like mobile, IoT devices, embedded Linux, androids, iOS,
and microcontroller units (MCUs) [36]. Figure 5 describes the steps in performing model conversion steps with
TensorFlow-Lite for edge-based deployment.

In general, models are built and trained with TensorFlow. Later, the model is converted to TF-lite models,
reducing the model size, parameters, memory footprint, and computational costs. TF-lite models are com-
pressed FlatBuffer files, an efficient cross-platform data serialization library supported by various platforms
and languages. It has a lower code footprint and better efficiency and speed, which is extended here for edge
deployment. There are further optimization methods supported by TF-lite called quantization. Model quanti-
zation is a model compression technique where model parameters (weights and activations) are converted from
high-precision floating-point representation (64-bit or 32-bit) to fixed-point representation (16-bit or 8-bit).
Generally, post-training quantization (PTQ) is used to run inference. The advantage of edge-based deployment
over the cloud is that it severs the link between the internet and the host machine, thus avoiding network latency
and creating a faster turnaround time. We have leveraged the model quantization method to implement it on
edge devices such as Raspberry Pi3 and NVIDIA Jetson Nano boards.

4.3 Performance Metrics

1. Intersection over Union (IoU)
This is a metric based on the similarity between two data, where the area overlapping between the de-
tected/ predicted bounding box and the ground truth bounding box is divided by the total area of the
union of them. Figure 6 a describes the IoU effectively. The two different color bounding boxes are
of predicted and ground truth objects, respectively. After obtaining the IoU measure, a comparison is
performed with an agreed threshold to decide the outcome of the prediction. If IoU ≥ threshold, the
prediction is correct. If IoU < threshold, the prediction is incorrect.

2. Fundamental performance metrics of an object detection model
The fundamental metrics to evaluate the performance of many object detection models. In any computer
vision task, the key features for measuring proficiency are precision, recall, and F1-score. Figure 6 b

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 59

(a) True Positive (TP), Object is present and
model correctly detects with IoU >= threshold

(b) False Positive (FP), Object is present and
model incorrectly detects with IoU < threshold

(b) False Negative (FN), Object is present
 and model does not detect

(c) False Positive (FP), Object is not present
 and model detects

IoU = Area of Overlap
Area of Union

Figure 6: (a) Intersection over Union (b) Prediction outcomes of a CNN-based object detection model

describes the basics of various concepts dealing with object detection in computer vision, bounding
boxes with red and blue colors representing ground truth and predicted area, respectively.

• Precision is a performance metric that assesses the ability to correct the prediction of the model.

Precision =
TP

TP + FP
=

TP

All detections
(1)

• Recall is mainly termed as the sensitivity of the object detection algorithm, which measures the
ability to find all positive predictions. From an object detection perspective, true negative (TN)
cases are not considered.

Recall =
TP

TP + FN
=

TP

All ground truths
(2)

• The precision vs. recall curve can be seen as a trade-off between precision and recall for different
confidence values associated with the bounding boxes generated by a detector [29]. The average
precision (AP) is the area under the precision-recall curve. Mean average precision (mAP) is simply
an average of AP over a number of classes, N. It is a metric used to measure the accuracy and
correctives of an object detection model.

mAP =
1

N

N∑
i=1

APi (3)

Interpolated AP - For object detection challenge, popular dataset like ImageNet [31], COCO[32],
PASCAL VOC [33] and many more. For the PASCAL VOC dataset, positive prediction is for IoU
≥ 0.5. For COCO, a positive prediction is considered for AP@[0.5:0.95] for average AP or mAP.

• F1-score is computed by combining the precision and recall metrics of the model and is a parameter
for determining how many times the model has made a positive prediction,

F1− Score =
2× Precision×Recall

Precision+Recall
(4)

5 Results and Discussion

As discussed earlier, training has been carried out in 3 different ways, i.e., LPD only, vehicle detection, single
model performing LPD, and vehicle detection, and their training accuracy and other metrics are shown in

60 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

Table 2: Performance metrics of models in training and testing environment respectively

(a) Training performance metrics (b) Testing performance metrics
Model Specification Accuracy mAP mAR F1-score

Model Class
LP detection 1 95.7 % 0.618 0.656 0.64

vehicle 1 93.5 % 0.611 0.625 0.62
LP + vehicle 2 97.8 % 0.662 0.689 0.68

Model Specification Accuracy mAP mAR F1-score
Model Class

LP detection 1 95.8 % 0.406 0.645 0.5
vehicle 1 92.6 % 0.651 0.554 0.6

LP + vehicle 2 97.9 % 0.576 0.713 0.64

Table 3: Evaluation results of models with same testing dataset in different model quantization format

Specification

TensorFlow
(float)

TensorFlow-Lite
(float)

TensorFlow-Lite
(quantized 16-bit)

Accuracy mAP time (s) Accuracy mAP time (s) Accuracy mAP time (s)
CPU GPU CPU GPU CPU GPU

LPD only 95.8% 0.406 0.436 0.3 73.4% 0.396 0.161 0.155 64.5% 0.315 0.158 0.153
vehicle followed by LPD 93.2% 0.52 1.27 s 0.613 79.4% 0.53 0.321 0.314 72.5% 0.325 0.316 0.306

vehicle + LP 97.9% 0.576 0.832 s 0.315 85.3% 0.446 0.158 0.158 77.6% 0.348 0.16 0.154

Table 2. This table reports training and evaluation performance metrics for all three scenarios where models
are trained and evaluated on the same training and testing dataset, respectively. The final reported accuracy is
for accurate LP localization in every scenario. We have categorized positive prediction if and only if IoU ≥
0.5 and have marked such cases as accurate. Our proposed method, where a single model performs LPD and
vehicle detection, surpasses accuracy, mAP, mAR, and F1-score due to double thresholding, ensuring positive
localization most of the time.

Illustrated in Figure 3, there are three different scenarios to achieve LPD. We implemented all of them and
logged the results. We can observe in Table 3 that all the discussed methods of achieving LPD are mentioned.
They are LPD only, vehicle detection sequentially followed by LPD, and our proposed method performs vehicle
and LP detection in a single pass. It can be inferred from the results that our proposed method performs with
the least latency and good precision throughout, as both detections (vehicle and LP) are achieved in a single
pass compared to sequentially achieving vehicle detection and LPD. When comparing the discussed methods,
our proposed method achieves improved performance with reduced processing time across the different quan-
tization formats in software-based implementation on CPU with processor AMD Ryzen 7 6800H with GPU
4 GB GeForce RTX 3050 graphics, respectively. The time logged here is the mean/ average time taken when
performing the evaluation on the entire testing dataset across all the quantization formats.

TensorFlow models were in floating precision around 37 MB (frozen graph(.pb) 18 MB and variable 19
MB). The main intent was to have an end-user application on edge devices, so we leveraged the model con-
version technique supported by TF-Lite with no quantization and 16-bit fixed-point quantization, respectively.
The model size was reduced to 22MB and 11 MB, resulting in model size reduction by 1.68× and 3.36×, re-
spectively, compared to the original model. Since the model quantization converts the model parameters from
high-precision to low-precision, the reduction in accuracy score is inevitable. There is no API similar to Ten-
sorFlow in TF-Lite to achieve performance metrics, so we need to create an interpreter instance of the TF-Lite
flat-buffer model. The TF-Lite interpreter is run on the same testing dataset of 180 images, and for positive
prediction, we have restricted IoU ≥ 0.5 to calculate all the metrics reported in the Table 3. We have witnessed
performance loss across the different quantization methods. However, due to our proposed method of double-
checking the LP with our enhanced extraction algorithm, we have maintained that our proposed implementation
performs better among all the above-discussed methods. Also, our proposed method ensures that even if we
further quantize our model to 8-bit or lower due to double-checking, the false detection could be prevented with
a single pass. Here, when comparing with the state-of-the-art implementation, we have compared the quantized
16-bit TensorFlow-Lite models on edge devices, and they performed the best when compared with the other
two models in terms of latency and memory.

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 61

Table 4: Comparison with existing work across different platform and performance

Work Implementation Accuracy Platform Time (s)

Khan et.al. [37] LPD 90.94 %
CPU 0.99
GPU 0.42

Proposed LPD 97.9 % CPU 0.26
GPU 0.21

Li et.al [38] LPD 97.3 % NVIDIA Tesla K40c 3
Proposed LPD 97.9 % NVIDIA Jetson Nano 1.2

Izidio et.al [8] LPD + LPR 96.38 % Raspberry Pi3 2.70
Proposed LPD + LPR 95.15 % Raspberry Pi3 2.596

5.1 Comparison with state-of-the-art

We have made a comparison with the existing implementation and have reported our findings. Table 4 has
the comparison across various platforms like CPU, GPU, and edge devices, respectively. The reported time
is the least time taken to achieve a single prediction. Upon comparing with similar software implementation
with [37], our proposed method has 1.07× improved accuracy with 3.8× and 2× speed ups in CPU and GPU
based execution respectively. When discussing edge-based implementation, we have implemented it on Rasp-
berry Pi3 and NVIDIA boards [38], and their findings are logged. Comparing with the NVIDIA development
board, we have compared the LPD task, and we have achieved improved accuracy marginally but a massive
speedup of about 2.5× in terms of latency by being able to run the LPD task on Quad-core ARM Cortex-A57
MPCore processor on NVIDIA Jetson Nano 2GB. We have also successfully implemented our end-to-end so-
lution on Raspberry Pi3 from camera acquisition to license plate detection and recognition in 1.736 s and 0.86
s, respectively. We have used a Pi NOIR2 camera with Raspberry Pi3 for real-time image acquisition for size
(1024,780) and performed real-time prediction with our proposed design in a pipelined fashion. Compared
with Raspberry Pi3 [8], we have improved throughput by 3.85% in an end-to-end realization for a real-time
solution. Our method has implemented two class detection for LPD (vehicle + car) along with out-of-the-box
Tesseract for LPR. In existing works, the images in the dataset are either close-up images of vehicles with clear
LP visibility or single vehicle presence in an image, which simplifies the detection process. However, in our
proposed method, we have designed a dataset consisting of multiple vehicles, and performing LPD and LPR in
that sequence is more complex, which justifies the slight performance loss.

6 Conclusion

This study presents a solution for automatic license plate detection and recognition using deep learning method-
ology with our proposed novel extraction algorithm. We have combined EfficientDet-D0 for performing license
plate detection (LPD) and Tesseract for license plate recognition (LPR) in a pipeline fashion. As per our find-
ings, this is the first implementation with EfficientDet-D0 as an LPD application, and we have witnessed that
with a smaller dataset and training, the model competes with other existing object detection algorithms. Our
proposed solution reduces false detection by getting the vehicle and LP detection in a single pass, followed
by our proposed extraction algorithm incorporating double-checking LPs in various backgrounds. We have
also explored the suitability of edge implementation by performing model optimization and quantization with
TensorFlow-Lite, and we have reduced model size with comparable accuracy loss. Our proposed method has
improved performance and reduced latency with similar benchmarks. We have also executed end-to-end im-
plementation, from image acquisition to LPD and LPR, extracting characters present in a license plate.

In future work, we will target other embedded platforms with model optimization methods to improve per-
formance with further model compression, like quantization-aware training, pruning, etc. In the future scope,

62 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

the acceleration of these solutions on FPGA-based devices looks promising, with reduced power consumption
and faster results that could be a breakthrough in real-time solutions for end applications.

References

[1] Zi Yang, Lilian S.C. Pun-Cheng,“Vehicle Detection in Intelligent Transportation Systems and Its Appli-
cations Under Varying Environments: A Review”, Image and Vision Computing, Volume 69, 2018, doi:
https://doi.org/10.1016/j.imavis.2017.09.008.

[2] Kumar P., “ANPR Camera: Latest Trends and Forecast 20242030 in the global market”. [Online] Available:
https://kotaielectronics.com/anpr-camera-latest-trends-in-2024-2030/.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision and Challenges”, in IEEE Internet of
Things Journal, vol. 3, Oct. 2016, doi: https://doi.org/10.1109/JIOT.2016.2579198.

[4] G. Yan and Q. Qin, “The Application of Edge Computing Technology in the Collaborative Optimization
of Intelligent Transportation System Based on Information Physical Fusion”, IEEE Access, 2020, doi:
https://doi.org/10.1109/ACCESS.2020.3008780.

[5] P Mukhija, P Dahiya, (2021). “Challenges in Automatic License Plate Recognition System: An Indian
Scenario”, doi: http://dx.doi.org/10.1109/CICT53244.2021.00055

[6] H. Wang, J. Hou and N. Chen, “A Survey of Vehicle Re-Identification Based on Deep Learning,” in IEEE
Access, vol. 7, pp. 172443-172469, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2956172.

[7] Z. Xu, W. Yang, A. Meng, N. Lu, H. Huang, C. Ying, e. V. Huang, Liusheng, M. Hebert, C. Sminchis-
escu, and Y. Weiss, “Towards end-to-end License Plate Detection and Recognition: A Large Dataset
and Baseline”, in Computer Vision – ECCV 2018, Springer Intern. Publishing, 2018, pp.261–277, doi:
https://doi.org/10.1007/978-3-030-01261-8 16.

[8] D. M. F. Izidio, A. P. A. Ferreira, and E. N. S. Barros, “An Embedded Automatic License
Plate Recognition System Using Deep Learning” in 2018 VIII (SBESC), 2018, pp. 38–45, doi:
https://doi.org/10.1109/SBESC.2018.00015.

[9] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz, and
D. Menotti, “A Robust Real-Time Automatic License Plate Recognition Based on the YOLO De-
tector,” in International Joint Conference on Neural Networks (IJCNN), July 2018, pp. 1–10, doi:
https://doi.org/10.1109/IJCNN.2018.8489629.

[10] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Efficient Object Detection”, CoRR, vol.
abs/1911.09070, 2019. [Online]. doi: https://doi.org/10.1109/CVPR42600.2020.01079.

[11] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Ob-
ject Detection,” CoRR, vol. abs/1506.02640, 2015. [Online], doi: https://doi.org/10.1109/CVPR.2016.91.

[12] J. Redmon and A. Farhadi, “Yolov3: An Incremental Improvement,” 2018. [Online]. doi:
https://doi.org/10.48550/arXiv.1804.02767.

[13] A. G. Howard, M. Zhu, et.al., “Mobilenets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. doi:
https://doi.org/10.48550/arXiv.1704.04861.

[14] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features”, in Proc. ICCV, Kerkyra, Greece,
1999, pp. 1150-1157, doi: https://doi.org/10.1109/ICCV.1999.790410.

Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024 63

[15] Z. Selmi, M. Ben Halima, and A. M. Alimi, “Deep Learning System for Automatic License Plate
Detection and Recognition”, in 2017 14th IAPR (ICDAR), vol. 01, 2017, pp. 1132–1138 , doi:
https://doi.org/10.1109/ICDAR.2017.187.

[16] B. Hongliang and L. Changping, “A Hybrid License Plate Extraction Method based on Edge Etatis-
tics and Morphology” in Proceedings of the 17th ICPR 2004., vol. 2, 2004, pp. 831–834 Vol.2, doi:
https://doi.org/10.1109/ICPR.2004.1334387.

[17] S. Paneerselvam, P. Gurudath, R. Prithvi, and V. Ananth, “Automatic License Plate Recognition using
Image Processing and Neural Network”, ICTACT J. on Image and Video Proc., vol. 8, 05 2018, doi:
http://dx.doi.org/10.21917/ijivp.2018.0251

[18] V. Koval, V. Turchenko, V. Kochan, A. Sachenko, and G. Markowsky, “Smart License Plate Recog-
nition System Based on Image Processing Using Neural Network”, 10 2003, pp. 123 – 127, doi:
https://doi.org/10.1109/IDAACS.2003.1249531

[19] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection”, in Proc. CVPR, San
Diego, CA, USA, 2005, pp. 886-893, doi: https://doi.org/10.1109/CVPR.2005.177.

[20] H. Yi, S. Shiyu, D. Xiusheng, and C. Zhigang, “A Study on Deep Neural Networks Framework”, in 2016
IEEE Adv. Inf. Management, Communicates, Elect. and Aut. Control Conf. (IMCEC), 2016, pp. 1519–1522,
doi: https://doi.org/10.1109/IMCEC.2016.7867471.

[21] C.-H. Lin, Y.-S. Lin, and W.-C. Liu, “An Efficient License Plate Recognition System Using Convolution
Neural Networks,” in 2018 IEEE Intern. Conf. on Applied System Invention (ICASI), 2018, pp. 224–227,
doi: https://doi.org/10.1109/ICASI.2018.8394573.

[22] R. S. Charran and R. K. Dubey, ”Two-Wheeler Vehicle Traffic Violations Detection and Automated Tick-
eting for Indian Road Scenario”, in IEEE Transactions on Intelligent Transportation Systems, Nov. 2022,
doi: https://doi.org/10.1109/TITS.2022.3186679.

[23] Y. C. Chiu, C. Y. Tsai, M. D. Ruan, G. Y. Shen and T. T. Lee, “Mobilenet-SSDv2:
An Improved Object Detection Model for Embedded Systems,” ICSSE, 2020, doi:
https://doi.org/10.1109/ICSSE50014.2020.9219319.

[24] Girshick, Ross, et al. “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmenta-
tion. 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 58087, doi:
https://doi.org/10.1109/CVPR.2014.81.

[25] K. Lenc and A. Vedaldi, “R-CNN minus R”, CVPR 2017, doi:
https://doi.org/10.48550/arXiv.1506.06981.

[26] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks,” CoRR, 2015. doi: https://doi.org/10.48550/arXiv.1506.01497.

[27] Tsung-Yi Lin, Piotr Doll ar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. “Feature
Pyramid Networks for Object Detection”, CVPR, 2017, doi: https://doi.org/10.48550/arXiv.1612.03144

[28] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single Shot
multibox detector”, in ECCV, 2016, doi: https://doi.org/10.1007/978-3-319-46448-0 2.

[29] Z. -Q. Zhao, P. Zheng, S. -T. Xu and X. Wu, “Object Detection With Deep Learning: A Review,” in IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212-3232, Nov. 2019, doi:
https://doi.org/10.1109/TNNLS.2018.2876865.

64 Swati et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):50-64, 2024

[30] Tzutalin, “LabelImg”, Git code (2015). Available: https://github.com/tzutalin/labelImg, Accessed:
September 2023

[31] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li and Li Fei-Fei, “ImageNet: A Large-Scale
Hierarchical Image Database,” 2009 IEEE CVPR, Miami, FL, USA, 2009, pp. 248-255, doi:
https://doi.org/10.1109/CVPR.2009.5206848

[32] Lin, TY. et al., “Microsoft COCO: Common Objects in Context”, Computer Vision ECCV 2014. Lecture
Notes in Computer Science, vol 8693. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-10602-1 48

[33] Everingham M., Van Gool L., Williams C. K. I., Winn, J. and Zisserman, A., “PASCAL Visual Ob-
ject Classes (VOC) Challenge”, International Journal of Computer Vision, 88(2), 303-338, 2010, doi:
https://doi.org/10.1007/s11263-009-0275-4

[34] Python-Tesseract OCR Engine, Available: https://pypi.org/project/pytesseract/, Accessed:Feb 2024.

[35] Car and License Plate Detection, Available: https://www.kaggle.com/datasets/riotulab/car-and-license-
plate-detection, June 2023.

[36] TensorFlow-Lite ML for Mobile and Edge, Available: https://www.tensorflow.org/lite , Accessed: Dec
2023.

[37] H. Wang, J. Hou and N. Chen, “A Novel Deep Learning Based ANPR Pipeline for Vehicle Access Con-
trol”, in IEEE Access, vol. 7, pp. 64172-64184, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3183101.

[38] H. Li and C. Shen, “Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs”
in CoRR,1601.05610 , 2016, doi: https://doi.org/10.1016/j.imavis.2018.02.002.

	Introduction
	Organizational structure of the article

	Related Work
	Conventional Methods
	DL-based Methods

	Proposed Methodology
	Object Detection Revisited
	EfficientDet
	Proposed Implementation
	License Plate Detection and Extraction
	License Plate Recognition (LPR)

	Experimental Setup
	Dataset Preparation
	Edge-based Deployment with TensorFlow-Lite
	Performance Metrics

	Results and Discussion
	Comparison with state-of-the-art

	Conclusion

