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Abstract

Individuals afflicted with color vision deficiency (CVD) often face obstacles in effectively navigating
and engaging with their surroundings due to challenges in accurately discerning colors. Such limitations can
hinder a range of daily activities, compelling these individuals to rely on external assistance for color-centric
tasks, potentially curtailing their autonomy and inclusiveness. In response, our study presents a machine
learning-driven color adaptation framework developed using TensorFlow and Keras, which successfully
detects and modifies colors within visual content to enhance perceptibility for those with CVD. The system
achieved a notable accuracy of up to 98.01% in color correction across different types of CVD, including
Protanopia, Deuteranopia, and Tritanopia. Our user-centric graphical user interface (GUI) facilitates an
intuitive experience, enabling users to upload, process, and visualize color-corrected images effortlessly.
The research demonstrates robust performance through extensive testing, ensuring reliability across various
contexts. By improving navigational capabilities and reducing reliance on external assistance, our innovation
promotes inclusivity and advances understanding of CVD. Ultimately, this work aims to foster a more
equitable and accessible society for individuals with color vision deficiencies.
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1 Introduction

Color vision deficiency (CVD), commonly referred to as color blindness, represents a widespread visual impair-
ment affecting a substantial segment of the global populace [1]. This condition encompasses various subtypes,
including red-green, blue-yellow, and complete color blindness, predominantly resulting from specific genetic
mutations impacting retinal photopigments [2]. Individuals afflicted with CVD face difficulties in discriminat-
ing between particular colors, posing challenges in numerous daily tasks such as interpreting signage, selecting
ripe fruits, and interpreting color-coded data in charts and graphs.

These obstacles arise from compromised color differentiation abilities, potentially leading to confusion and
misinterpretation of visual information. CVD severely limits the ability of affected individuals to accurately
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perceive and distinguish colors, impeding their capacity to navigate everyday environments, engage with digital
content, and perform tasks that require color discrimination. Traditional aids for CVD, such as filters or lenses,
offer limited improvement and often rely on external support. Existing methodologies, such as the Information
Preserving Color Transformation technique for Protanopia and Deuteranopia, have demonstrated potential in
maintaining the original color information while adapting images for color-impaired viewers [9]. However, the
lack of a reliable, automated solution for adapting colors in digital content creates a gap that hinders inclusivity
for those with CVD in various contexts, including healthcare, education, and technology.

Recent advancements have explored various approaches to enhance color accessibility for individuals with
CVD. For example, Masra et al. (2020) proposed methods for color correction that can improve the visual
experience for colorblind individuals, addressing some of the gaps in traditional approaches [17]. Additionally,
Pendhari et al. (2015) discussed techniques for video and image recoloring that can assist color-impaired
individuals by enhancing color differentiation in multimedia [24]. Further, Pendhari et al. (2020) explored the
use of MATLAB for multimedia recoloring, demonstrating practical solutions for improving color accessibility
[22]. These studies underscore the ongoing need for effective, automated solutions that integrate real-time
processing and user-friendly interfaces.

This paper’s contribution lies in addressing this gap by proposing a novel, machine learning-based system
that transforms colors in images, specifically enhancing perceptibility for individuals with Protanopia, Deuter-
anopia, and Tritanopia. The uniqueness of our approach is in leveraging machine learning frameworks such
as TensorFlow and Keras, paired with advanced image processing techniques, to develop a system that dy-
namically adjusts image colors in real time, ensuring that the original context of the visual content remains
intact. Unlike existing solutions, which offer limited practicality, our model emphasizes both accuracy and
accessibility through an intuitive graphical user interface (GUI), making it usable even by non-technical users.

With the advancement of machine learning and image processing technologies, we discerned an opportunity
to devise innovative computational solutions to aid individuals with CVD in surmounting these challenges [4].
Recent studies, such as those involving video processing for Tritanomaly and machine learning techniques to
improve color accessibility in digital content, have explored the application of neural networks in detecting
and correcting color deficiencies in multimedia, further motivating the development of image transformation
models for similar purposes [13, 27]. The principal aim of our research is to conceptualize and implement a
machine learning-driven framework capable of detecting and modifying colors in images to improve visibility
for individuals with CVD.

Our research involved the acquisition and preprocessing of a dataset comprising 6,000 images to ensure
consistency and quality [6]. Subsequently, we crafted three specialized machine learning models leveraging
the TensorFlow and Keras frameworks. These models were designed to identify blue, red, and standard colors
within images and transform them into distinguishable hues, such as purple and brown. Related approaches,
such as image colorization using convolutional neural networks, have shown promise in enhancing color rep-
resentation, which we have incorporated into our methodology [18]. Our contribution also includes a thorough
validation of these models, demonstrating high accuracy and adaptability across a diverse range of image cate-
gories, which addresses a critical shortcoming in earlier approaches.

In tandem with the development of machine learning models, we constructed an interactive graphical user
interface (GUI) using Tkinter. This GUI enables users to upload images, apply color transformations using the
trained models, and visualize the results in real-time. Furthermore, we integrated an Ishihara color blindness
test module within the GUI, enabling users to self-assess their CVD and gain insights into the nature and extent
of their color vision deficiency [10, 11]. By offering an integrated tool that not only corrects color vision in
images but also allows self-evaluation of CVD, this paper delivers a comprehensive solution aimed at enhancing
user autonomy and inclusivity.

In this paper, we present a comprehensive overview of our research, outlining the methodology, implemen-
tation approaches, results, and prospective recommendations. The novelty of our work lies in the integration
of machine learning with image processing in an accessible interface, which stands to significantly enhance the
visual experience of individuals with CVD. Our goal is to highlight the effectiveness and potential implications
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of the developed solution in alleviating the challenges faced by individuals with CVD and promoting inclusivity
through technological innovation [21, 27].

2 Related Work

Kim et al. [1] introduced a novel daltonization method tailored for protanopes, which significantly improved
color perception and processing speed compared to traditional techniques. Orii et al. [2] presented a color
conversion algorithm using self-organizing maps, effectively enhancing legibility for color-blind individuals.
Huang et al. [3] proposed a re-coloring algorithm emphasizing key color contrast, demonstrating effectiveness
despite some limitations in color naturalness. Tsekouras et al. [4] and Kuhn et al. [5] both offered recoloring
algorithms for CVD, showcasing effectiveness in natural image recoloring and color contrast enhancement,
respectively, while ensuring image naturalness and faster processing.

Navada et al. [6] proposed a LabVIEW-based method for color and edge detection, which facilitated text
recognition for color-blind individuals, addressing challenges in recognizing letters against specific background
colors. Simon-Liedtke et al. [7] introduced a behavioral methodology for evaluating daltonization methods,
emphasizing the effectiveness of selected methods in improving responses for color-deficient observers without
affecting normal-sighted individuals. You and Park [8] presented a compensation algorithm for CVD, address-
ing color shifts and brightness reduction issues, while Almagambetov et al. [20] developed a visual-based traffic
light detection system with high accuracy, benefiting individuals with CVD by providing timely and reliable
information. Khurge et al. [11] modified images for Protanopia and Deuteranopia efficiently, enabling color
distinction for color-blind individuals, showcasing the potential of image modification techniques in enhancing
visual perception for those with color vision deficiencies.

Huang et al. [21] proposed a Temporally Consistent Video Colorization framework that ensured both effec-
tive colorization and temporal consistency, providing a valuable tool for enhancing visual media accessibility
for individuals with color vision deficiencies. They also introduced a comprehensive color transformation ap-
proach for Protanopia and Deuteranopia, maintaining comprehensibility and naturalness in recolored images
[12]. You and Park [8] presented an LCD-based color compensation method for CVD, effectively correcting
spectral response shifts and addressing brightness reduction issues. Additionally, Huang et al. [14] developed
a re-coloring algorithm improving accessibility for individuals with CVD, demonstrating efficiency and per-
ceptual superiority. They targeted hue channel contrast enhancement for color vision impairment, suggesting
further exploration for dynamic adjustment techniques [15].

Masra et al. [16] introduced advanced methodologies for image correction tailored to individuals with
dichromacy, improving color perception for various deficiencies through color transformation and colormap
approximation techniques. Navada et al. [23] presented a LabVIEW-based prototype for color identification,
aiding colorblind individuals and enhancing visual perception in real-time with promising affordability and
effectiveness. Kuhn et al. [19] proposed an efficient image recoloring method tailored for dichromats, pri-
oritizing natural appearance and speed, showcasing its potential to enhance interaction with digital media for
individuals with color vision deficiencies. Additionally, Khurge and Peshwani [11] introduced a recoloring al-
gorithm aimed at enhancing visual accessibility for protanopia, promising simplicity and efficiency for broader
applications.

Wang et al. [25] developed a deep learning approach for colorblind image enhancement, demonstrating
significant improvements in color visibility and analysis using advanced neural networks. Lee et al. [27]
presented machine learning techniques to improve color accessibility in digital content, focusing on enhancing
user experience for color-deficient individuals through innovative algorithms and real-time processing.
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Metric Methodology Improvements Strengths Limitations
Kim et al. [1] Daltonization method for

Protanopia
Improved color
perception and speed

Focused on
Protanopia with speed
advantage

Limited applicability
to other CVD types

Orii et al. [2] Self-organizing maps for
color conversion

Enhanced legibility Effective for
readability

Sometimes unnatural
color appearance

Huang et al. [3] Key color contrast
re-coloring

Maintains key color
contrast

Effective in key areas Colors less natural for
images

Tsekouras et al. [4] Natural image recoloring
algorithms

Better natural image
recoloring

Balances contrast and
naturalness

Slower on large-scale
data

Kuhn et al. [5] Color contrast
enhancement

Fast contrast
enhancement

Retains natural colors Not generalized for all
CVD

Navada et al. [6] LabVIEW-based edge
detection

Better text recognition
for CVD

Real-time color ID Limited for general
content

Simon-Liedtke et
al. [7]

Behavioral daltonization
evaluation

Improves CVD
response

Comparative study of
methods

No automated solution

You & Park [8] Compensation algorithm
for CVD

Corrects color
shift/brightness

Balances LCD color Only for LCD screens

Khurge et al. [11] Modified images for CVD
types

Better color
distinction

Efficient for specific
types

Not generalized

Huang et al. [12] Temporally Consistent
Video Colorization

Maintains color and
temporal consistency

Better for videos Focused only on
videos

Masra et al. [16] Dichromacy image
correction

Improves perception
for dichromats

Tailored to
dichromacy

Not for all CVD types

Kuhn et al. [19] Recoloring for dichromats Natural look with
speed

Good for digital media Focused only on
dichromats

Wang et al. [25] Deep learning
enhancement

Improves color
visibility

Uses neural networks Needs high compute

Lee et al. [27] ML techniques for color
accessibility

Better color
accessibility in
content

Leverages ML for
correction

Needs adaptation for
diverse content

Table 1: Comparison between previous related works.

3 Methodology

In our pursuit to address color blindness in individuals, we encountered two notable algorithms: the Daltonize
algorithm and the Gradient Map method. The Daltonize algorithm, named after the colorblind scientist John
Dalton, is devised to rectify images for colorblind viewers by strategically adjusting colors to compensate
for color perception deficiencies. For instance, for individuals with red-green color blindness, the algorithm
shifts colors towards blue and yellow to amplify contrast. Similarly, it modifies colors to enhance red-green
contrast for blue-yellow color blindness and also addresses the less common purple-green color blindness.
The Daltonize algorithm involves transforming the RGB values of each pixel in an image using mathematical
models that emulate the perception of colorblind individuals, adapting colors to improve visibility without
significantly altering the image’s overall appearance for those with normal color vision.

Contrastingly, the Gradient Map method adopts a distinct approach to improve image visibility for color-
blind individuals. This method functions by mapping the original image’s colors to a gradient that is more
distinguishable for colorblind viewers. The algorithm first identifies the colors in the image and then maps
these colors to a gradient where adjacent colors are distinguishable, even for those with color vision deficien-
cies. This mapping process ensures increased contrast between neighboring colors, making the image more
interpretable for colorblind individuals. Implementing the Gradient Map method involves intricate color space
transformations and mappings. The algorithm evaluates the color distribution in the image and creates a gra-
dient map that enhances color distinguishability, which can be achieved using techniques such as clustering
algorithms and perceptual color spaces.
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Our innovative model operates on a pixel-based approach, meticulously dividing each image into pixels and
transforming them based on our machine learning algorithms. We developed three distinct models tailored
specifically for three different types of color blindness: protanopia, tritanopia, and deuteranopia. These models
are based on Convolutional Neural Networks (CNNs), utilizing the Keras and TensorFlow frameworks. Each
model consists of three convolutional layers, with 32, 64, and 128 filters, respectively, all utilizing ReLU acti-
vation functions. MaxPooling layers are employed to downsample feature maps, followed by fully connected
layers to classify the transformed images. The final softmax layer classifies the transformed colors.

Hyperparameters were meticulously tuned to optimize performance: the learning rate was set at 0.001, the
batch size was 32, and training ran for 50 epochs. Early stopping was employed with a patience of 5 epochs to
prevent overfitting. We used the Adam optimizer, due to its adaptive learning capabilities, to minimize Mean
Squared Error (MSE) loss during training. The performance metrics, including accuracy, precision, recall, and
F1 score, were calculated to measure the effectiveness of the model in identifying and transforming colors.

The models were trained on a comprehensive dataset comprising 6,000 diverse images to ensure accurate
results across varied scenes and color compositions. For training, the dataset was preprocessed by resizing
images to 224x224 pixels, converting them to RGB format, and normalizing pixel values. This ensured that the
CNN models could efficiently extract relevant features for color transformation tasks.

To further augment usability, we integrated the models into a user-friendly GUI, which allows users to
upload and transform images. This interface is built using Tkinter and includes an Ishihara Test module for
color blindness self-assessment. The interface seamlessly enables users to evaluate their color vision deficiency
and view transformed images that cater to their specific type of color blindness.

Additionally, we developed an Autoencoder-based Color Enhancement algorithm that operates by training
a neural network to learn the transformation between input and output images. This model transforms red
hues to brown for protanopia, adjusts green hues to yellow for deuteranopia, and alters blue hues to purple for
tritanopia. The autoencoder model is trained using the same dataset, employing a loss function that minimizes
the differences between input and enhanced images.

Simultaneously, our Convolutional Neural Network (CNN) with MaxPooling and UpSampling offers an
alternative approach for image enhancement. This model extracts features at multiple scales to enhance color
contrast and improve visibility for individuals with CVD. The network parameters are adjusted using the Adam
optimizer, with Mean Absolute Error (MAE) and Mean Squared Error (MSE) serving as key performance
indicators, ensuring accurate color transformations while preserving image structure.

3.1 Data Collection and Preparation

The Color Transformation System for Color Blindness Correction leverages a rigorous approach to data col-
lection, curation, preprocessing, and augmentation to construct a specialized dataset derived from the COCO
2017 dataset. The extracted images undergo standardization, enhancement, and augmentation using advanced
techniques, encompassing resizing, normalization, contrast adjustment, histogram equalization, and rotation,
flipping, and zooming. Each image is meticulously annotated, labeled for specific color transformations, and
segmented into training, validation, and test subsets. Stringent validation and management protocols ensure
quality, integrity, and consistency across subsets, with efficient storage and documentation mechanisms imple-
mented to facilitate the development of robust and resilient models optimized for performance, noise, and envi-
ronmental factors. To address the specific needs of individuals with Protanopia, Deuteranopia, and Tritanopia,
we propose a machine learning-driven color adaptation framework. The system leverages a convolutional au-
toencoder, which is specifically designed to detect and adjust colors in images, improving color perception for
individuals with CVD.

A detailed analysis of the dataset composition revealed certain imbalances, particularly with underrepresen-
tation of green-dominated images. The dataset comprises the following categories:

This breakdown highlights the imbalance, with fewer green-dominated images compared to other categories.
Since Deuteranopia primarily affects green hues, this imbalance may have contributed to the relatively lower
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Category Count Percentage
Green-dominated 1200 20%
Red-dominated 2400 40%
Blue-dominated 1800 30%
Mixed Colours 600 10%

Table 2: Breakdown of Color-Dominated Categories in the Dataset

precision and F1 scores observed for the Deuteranopia model. To address this, future efforts will include
augmenting the dataset with a higher proportion of green-heavy images and diversifying the image categories
further. These adjustments aim to ensure more equitable representation and improve the model’s generalization
capability across different CVD subtypes.

To address the specific needs of individuals with Protanopia, Deuteranopia, and Tritanopia, we propose
a machine learning-driven color adaptation framework. The system leverages a convolutional autoencoder,
which is specifically designed to detect and adjust colors in images, improving color perception for individuals
with CVD.

3.2 Workflow Framework

3.2.1 Training of the model

The autoencoder model employed in this study is constructed using TensorFlow’s Sequential API, incorpo-
rating convolutional layers for feature extraction and upsampling layers for image reconstruction. The model
architecture consists of the following layers: a convolutional layer with 128 filters, a kernel size of (3, 3),
ReLU activation, and ’same’ padding, followed by a max-pooling layer with a pooling size of (2, 2) and ’same’
padding. Subsequently, another convolutional layer with 256 filters, a kernel size of (3, 3), and ReLU activation
is added, complemented by a max-pooling layer with the same specifications. A third convolutional layer with
256 filters and a kernel size of (3, 3), followed by two upsampling layers with upsampling sizes of (2, 2), is
introduced. The final layers consist of a convolutional layer with 128 filters, a kernel size of (3, 3), and ReLU
activation, and a convolutional layer with 3 filters (corresponding to RGB channels), a kernel size of (3, 3),
sigmoid activation, and ’same’ padding.

We have a grayscale input image with dimensions 28 × 28. We’ll use a 3 × 3 kernel for convolution and a
2× 2 max-pooling operation.

First, let’s define our input image matrix I (28 × 28) and our kernel matrix K (3 × 3) with random values
for illustration purposes:

I =

 1 2 · · · 28
...

...
. . .

...
757 758 · · · 784

 (1)

K =

0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

 (2)

Now, let’s perform the convolution operation:

Oconv = I ∗K + b (3)

Where b is the bias term. For simplicity, let’s ignore the bias term for this example.
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oconv =

 o1,1 o1,2 · · · o1,28
...

...
. . .

...
o26,1 o26,2 · · · o26,28

 (4)

Each O(i,j) is computed by performing element-wise multiplication between the kernel and the correspond-
ing input patch, and then summing up the results.

Next, let’s apply max-pooling with a 2× 2 window:

Opool = MaxPool(Oconv) (5)

For each non-overlapping 2× 2 window, we select the maximum value:

Opool =

 max(o1,1, o1,2, o2,1, o2,2) max(o1,3, o1,4, o2,3, o2,4) · · · max(o1,27, o1,28, o2,27, o2,28)
...

...
. . .

...
max(o27,1, o27,2, o28,1, o28,2) max(o27,3, o27,4, o28,3, o28,4) · · · max(o27,27, o27,28, o28,27, o28,28)


(6)

This Opool matrix would be the output of our CNN after the convolutional and pooling layers. It would have
dimensions 14× 14 if the stride for pooling is 2 (which is typical).

Suppose we have an input image of size 4×4 pixels (for simplicity). Here’s the grayscale image represented
as a matrix:

Input Image =


0.1 0.2 0.3 0.4
0.5 0.6 0.7 0.8
0.9 0.8 0.7 0.6
0.5 0.4 0.3 0.2

 (7)

For this example, let’s consider this input image represents one of the images loaded by the load dataset
function.

Convolutional Autoencoder Process:

• Step 1: Forward Pass through the Model:

• Input Image Preprocessing: Normalize pixel values to the range [0, 1].

• Convolutional Layer: Convolution with 128 filters of size 3 × 3 using ReLU activation and ’same’
padding.

• Max Pooling with a pooling size of 2× 2 and ’same’ padding.

• Upsampling Layer: Upsampling with an upsampling size of 2× 2.

• Convolutional Layer: Convolution with 256 filters of size 3 × 3 using ReLU activation and ’same’
padding.

• Max Pooling with a pooling size of 2× 2 and ’same’ padding.

• Upsampling Layer: Upsampling with an upsampling size of 2× 2.

• Convolutional Layer: Convolution with 3 filters of size 3×3 using sigmoid activation and ’same’ padding.
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Let’s compute the output after each layer:

Output after Convolutional Layer 1:

Output after Conv Layer 1 =

[
0.2 0.3
0.6 0.7

]
(8)

Output after Upsampling Layer 1 (repeats each element twice in both dimensions):

Output after Upsampling 1 =


0.2 0.2 0.3 0.3
0.2 0.2 0.3 0.3
0.6 0.6 0.7 0.7
0.6 0.6 0.7 0.7

 (9)

Output after Convolutional Layer 2:

Output after Conv Layer 2 =

[
0.4 0.4
0.8 0.8

]
(10)

Output after Upsampling Layer 2:

Output after Upsampling 2 =


0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4
0.8 0.8 0.8 0.8
0.8 0.8 0.8 0.8

 (11)

Output after Convolutional Layer 3:

Output after Conv Layer 3 =


0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3
0.7 0.7 0.7 0.7
0.7 0.7 0.7 0.7

 (12)

This demonstrates the simplified forward pass through the autoencoder model as described by the code. In
practice, more complex images and larger networks would be used.

The following flowchart outlines the methodology used in developing the Color Transformation System for
color vision deficiency (CVD). It illustrates the key stages, including data acquisition and preprocessing, model
development, image transformation, evaluation, and GUI integration. This structured approach ensures the
creation of effective and user-friendly solutions for enhancing color perception in images for individuals with
Protanopia, Deuteranopia, and Tritanopia.
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Figure 1: Workflow framework for Color Transformation System.

4 Results and Discussion

The graphical user interface (GUI), crafted utilizing the Tkinter framework in Python, enables intuitive user
interaction, allowing users to seamlessly upload, process, and visualize images undergoing color transforma-
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tion. The GUI exhibits commendable performance and responsiveness, fostering enhanced user engagement,
satisfaction, and exploration of the system’s functionalities.

Figure 2: GUI Software Modules

4.1 Ishihara Plate Test

The initial module of our Graphical User Interface (GUI) app introduces users to a detailed set of 12 Ishihara
plates, widely recognized instruments employed for assessing color vision deficiencies. Each Ishihara plate
displays a unique arrangement of colored dots, crafted to be easily distinguishable by individuals with typical
color vision while presenting difficulties for those with color vision impairments. Users are instructed to detect
the hidden numbers or shapes within each plate and input their answers accordingly.

After the Ishihara plate evaluation is completed, the app produces a visual summary that depicts the number
of correct and incorrect responses given by the user. This graphical overview offers immediate feedback on the
user’s performance, providing a concise representation of their accuracy in identifying the concealed numbers
or shapes within the plates.

Additionally, the app utilizes advanced algorithms to scrutinize the user’s answers and determine the specific
category of color deficiency they might be encountering. This analytical capability delivers valuable informa-
tion about the user’s color vision condition, serving as an initial diagnostic instrument that enhances awareness
and enables early identification of potential color vision impairments.

By offering users an interactive interface to interact with the Ishihara plates and obtain prompt feedback,
this module cultivates awareness and enables users to take proactive measures towards addressing their visual
requirements. It functions as an accessible and educational tool for individuals aiming to evaluate their color
vision capabilities and deepen their comprehension of their color perception skills.
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Figure 3: (Left) Ishihara Test Plate; (Right) Ishihara Test Plate (incorrect ans)

Figure 4: (Left) Ishihara Test Plate (correct ans); (Right) Ishihara Test Plate (with final result)
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Figure 5: Bar graph of correct and incorrect plates

Figure 6: Information for CVD detected
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4.2 Conversion for Protanopia

Figure 7: First Transformed image for Protanopia Patient

In the second module of the GUI app, users have the opportunity to witness the color transformation specifically
designed for protanopia. This module takes an input image and subjects it to processing by a Keras model that
has been trained to rectify protanopia color deficiencies. Upon receiving an image, the model employs color
correction techniques crafted to replicate the color perception experienced by individuals with protanopia. The
resulting output presented to the user displays the transformed image, highlighting the adjustments made to
improve color differentiation for those with protanopia. This module grants users a direct experience of the
impactful effects of tailored color correction techniques aimed at mitigating protanopia deficiencies.

Figure 8: Second Transformed image for Protanopia Patient

4.3 Conversion for Deuteranopia

Transitioning to the third module, users can delve into the color transformation tailored for deuteranopia. In
this segment, a dedicated Keras model is employed to address the color deficiencies linked to deuteranopia.
When users submit an image, the model analyses it to replicate the color perception of those with deuteranopia.
The resulting transformed image displays the color-adjusted rendition, highlighting the modifications made to
improve color differentiation and enhance clarity for individuals with deuteranopia.
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Figure 9: First Transformed image for Deuteranopia Patient

This module provides users with a hands-on demonstration of color transformation methods specifically
designed for deuteranopia, fostering comprehension and raising awareness about color deficiencies.

Figure 10: Second Transformed image for Deuteranopia Patient

4.4 Conversion for Tritanopia

In the fourth module, users interact with the color transformation tailored for tritanopia. Utilizing a specialized
Keras model, this module allows users to experience the impact of color correction methods designed to mitigate
tritanopia deficiencies. Upon submitting an image, users can see how the model analyses it to emulate the
color perception of those with tritanopia. The resulting transformed image showcases the adjusted version,
emphasizing the modifications made to enhance color differentiation and clarity for individuals with tritanopia.
This module acts as an educational resource, providing users with insights into color transformation strategies
specifically crafted to address tritanopia deficiencies.
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Figure 11: First Transformed image for Tritanopia Patient

Figure 12: Second Transformed image for Tritanopia Patient

4.5 Education Module

Finally, the fifth module of the GUI app centers on color blindness education. This segment offers users an
extensive array of information concerning color blindness, encompassing its various types, underlying causes,
prevalence rates, and the impact it has on daily activities. Users have the opportunity to explore educational
materials, including articles, videos, and interactive quizzes, to enrich their knowledge about color blindness
and its consequences. Moreover, this module delivers practical advice and recommendations for accommodat-
ing individuals with color vision deficiencies in different situations, advocating for inclusivity and accessibility.
By providing in-depth educational content, this module strives to enhance awareness and cultivate empathy
towards individuals affected by color blindness.
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Figure 13: Interface for Color Blindness Education Module

4.6 Analysis of Deuteranopia Model Performance

While the Deuteranopia model achieved a high accuracy of 98.01%, it showed significantly lower precision
(58.23%) and F1 score (65.36%) compared to the Protanopia and Tritanopia models. This discrepancy points
to a performance gap that warrants further investigation.

One potential explanation for the lower precision and F1 score lies in the inherent difficulty of distinguishing
between certain color hues for individuals with deuteranopia. Unlike protanopia, which primarily affects red
hues, deuteranopia impacts green hues. These hues are more challenging to adjust accurately due to their
proximity to other colors in the RGB spectrum. As a result, the model may have struggled to effectively
separate green and its neighboring hues, leading to a higher rate of false positives in the classification.

Moreover, the training dataset used may have suffered from an imbalance, particularly in the representation
of green-dominated images. This imbalance could have influenced the model’s ability to generalize effectively
across a wider variety of images. A deeper analysis of the dataset’s color composition and distribution could
offer valuable insights into the performance gaps observed.

To address this issue, future work will involve augmenting the dataset to include a broader range of green-
dominated images, which should provide a more representative training set. Additionally, further optimization
of the model’s architecture will be explored, including the incorporation of deeper CNN layers or alternative
loss functions tailored to the complexities of deuteranopia. Post-processing techniques, such as color clustering
and perceptual loss, may also be considered to improve the model’s precision when distinguishing between
challenging color ranges.

4.7 Emphasis on the Protanopia Model

Although this paper presents three distinct models for protanopia, deuteranopia, and tritanopia, greater empha-
sis is placed on the Protanopia model. This prioritization stems from several factors that make it both novel and
pivotal to our approach.

Firstly, protanopia is the most prevalent type of red-green color vision deficiency, affecting a significant
portion of the colorblind population. The practical need for an effective solution for this subtype justifies the
attention given to this model. Red hues, which are primarily affected in protanopia, play a critical role in many
real-world scenarios, such as traffic signals, warnings, and other color-coded information, making it essential
to develop a robust model for this condition.

Secondly, the Protanopia model incorporates unique architectural innovations. For example, our model
transforms red hues to brown to enhance distinguishability, a novel approach not commonly seen in prior
works. This specific color transformation technique, combined with the deep learning framework, showcases
the Protanopia model as a key advancement in color blindness correction.
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Moreover, the results obtained from this model exhibited remarkable accuracy (97.04%) and precision
(93.98%), underscoring its superior performance compared to traditional methods like Daltonization. This
model’s success in minimizing the loss of color information and maintaining the original image’s integrity for
non-colorblind users further supports its prioritization in this research.

In conclusion, while the Protanopia model is given more attention due to its broader impact and unique
approach, it is important to recognize that the methodologies and insights gained from this model can be
extended and adapted to the other models, including deuteranopia and tritanopia.

4.8 Evaluation Parameters and Benchmarks

Test Loss measures the average discrepancy between predicted and actual color transformations, reflecting the
model’s accuracy in aligning with true color adjustments. Lower values indicate better performance. In our
study, the low test loss across all models demonstrates effective color correction tailored to different types of
color vision deficiencies.

MSE quantifies the average squared error between predicted and actual color values. It highlights the preci-
sion of color adjustments, with lower MSE indicating more accurate transformations. The MSE results for our
models underscore their capability to minimize prediction errors and enhance color visibility.

MAE represents the average absolute differences between predicted and actual colors. It offers a straight-
forward measure of prediction accuracy. Our models’ MAE values show that they consistently produce close
approximations to the desired color adjustments, improving visual experiences for users with color vision defi-
ciencies.

Accuracy measures the proportion of correctly transformed colors out of the total evaluated. It indicates
the overall effectiveness of the model in achieving correct color corrections. The high accuracy rates for our
models confirm their success in providing effective color adjustments for various color vision deficiencies.

Precision assesses the proportion of true positive color adjustments among all predicted positives. It reflects
the model’s ability to accurately identify and adjust specific colors needing transformation. High precision
values in our models indicate reliable color adjustments with minimal false positives.

Recall measures the proportion of actual color adjustments correctly identified by the model. It evaluates the
model’s ability to detect all relevant color transformations. Strong recall values in our models ensure that they
effectively capture and adjust the necessary colors for users with color vision deficiencies.

The F1 Score combines precision and recall into a single metric, offering a balanced view of model perfor-
mance. It is useful for assessing overall effectiveness, especially in cases of imbalanced data. The F1 Scores
for our models indicate a good balance between accuracy and completeness in color adjustments.

Metric Protanopia Model Deuteranopia
Model

Tritanopia Model Daltonization / Gra-
dient Map

Test Loss 0.000915 0.0008157 0.00173 0.123 / 0.155
MSE 0.0009247 0.00082135 0.00175 0.045 / 0.062
MAE 0.019737 0.018384 0.02795 0.032 / 0.041
Accuracy 97.04% 98.01% 96.41% 87.9% / 86.2%
Precision 93.98% 58.23% 97.06% 90.5% / 88.0%
Recall 96.7% 75.18% 94.66% 84.5% / 83.5%
F1 Score 95.53% 65.36% 95.85% 87.4% / 85.7%

Table 3: Benchmark Comparison of Performance Metrics

Formulas used for the calculation:
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Mean Squared Error (MSE) =
1

n

n∑
i=1

(yi − ŷi)
2 (13)

Mean Absolute Error (MAE) =
1

n

n∑
i=1

|yi − ŷi| (14)

Accuracy =
Correct Predictions
Total Predictions

× 100% (15)

Precision =
True Positives

True Positives + False Positives
× 100% (16)

Recall =
True Positives

True Positives + False Negatives
× 100% (17)

F1 Score = 2× Precision × Recall
Precision + Recall

(18)

Our Protanopia, Deuteranopia, and Tritanopia models, developed through our innovative method, exhibit
unique performance characteristics across a range of metrics. The Protanopia model, pivotal to our novel
approach, registers a test loss of 0.000915 and an accuracy rate of 97.04

In comparison, the Daltonization and Gradient Map methods provide alternative solutions for addressing
color vision deficiencies. The Daltonization method reports a test loss of 0.123, an accuracy of 87.9%, and
corresponding MSE and MAE values of 0.045 and 0.032. The Gradient Map method, on the other hand,
exhibits a test loss of 0.155, an accuracy of 86.2%, and MSE and MAE values of 0.062 and 0.041, respectively.

When examining precision, recall, and F1 score, the Deuteranopia model demonstrates lower values com-
pared to our Protanopia, Tritanopia, Daltonization, and Gradient Map methods. It records precision and recall
rates of 58.23% and 75.18%, resulting in an F1 score of 65.36%. In contrast, our Protanopia and Tritanopia
models, along with the Daltonization and Gradient Map methods, display superior precision, recall, and F1
score metrics. Specifically, the Protanopia model achieves a precision of 93.98%, a recall of 96.7%, and an
F1 score of 95.53%. The Tritanopia model records precision, recall, and F1 score metrics of 97.06%, 94.66%,
and 95.85%, respectively. The Daltonization method reports precision, recall, and F1 score metrics of 90.5%,
84.5%, and 87.4%, respectively, while the Gradient Map method attains precision, recall, and F1 score metrics
of 88.0%, 83.5%, and 85.7%, respectively.

Despite variations in performance metrics, our novel models exhibit specific strengths and areas for en-
hancement when compared to the Daltonization and Gradient Map methods, highlighting the importance of
customized approaches in addressing diverse types of color blindness.
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Figure 14: (Left) Test Loss Comparison of our models vs Prominent algorithms; (Right) MSE Comparison of
our models vs Prominent algorithms

Figure 15: (Left) MAE Comparison of our models vs Prominent algorithms; (Right) Accuracy Comparison of
our models vs Prominent algorithms
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Figure 16: (Left) Precision Comparison of our models vs Prominent algorithms; (Right) Recall Comparison of
our models vs Prominent algorithms

Figure 17: F1 Score Comparison of our models vs Prominent algorithms

4.9 Unit Testing

The unit testing methodology we have implemented for protanopia focuses on evaluating the performance of
a model tailored for protanopia correction, where red pixels are transformed into brown pixels. The tests are
organized into three primary components.

Initially, the test load dataset function verifies the success of the dataset loading process, ensuring
that the input and output images are loaded as NumPy arrays. This step is pivotal for subsequent processing
stages.

Subsequently, the test visualize performance function gauges the model’s performance by illus-
trating the transformation of input pixels into reconstructed pixels. It loads test data, employs a pre-trained
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model to predict outputs, and plots original and reconstructed images for comparative analysis. Additionally, it
visualizes the distribution of pixel values for both original and reconstructed images to assess how effectively
the model maintains the characteristics of the input pixels.

Lastly, the test loss curve function generates simulated loss curve data and plots the training and
validation loss curves. This offers insights into the model’s training process and aids in comprehending its
convergence and generalization capabilities.

Collectively, these unit tests offer a thorough assessment of the model’s functionality, performance, and
training dynamics, which are vital aspects for ensuring the efficacy and reliability of the protanopia correction
model.

Figure 18: Distributions for Protanopia Model

Figure 19: Comparative Analysis of Original and Reconstructed Images with Corresponding Pixel Value Dis-
tributions for Protanopia Model

The unit testing methodology for tritanopia focuses on evaluating the performance of a model tailored for
tritanopia correction, where blue pixels are transformed. The tests are organized into three primary components.

Firstly, the test load dataset function verifies the successful loading of the dataset, validating that
both input and output images are loaded as NumPy arrays, which is crucial for subsequent processing.

Secondly, the test visualize performance function gauges the model’s performance by illustrating
the transformation of input pixels into reconstructed pixels. It loads test data, employs a pre-trained model to
predict outputs, and plots original and reconstructed images for comparative analysis. Additionally, it visualizes
the distribution of pixel values for both original and reconstructed images to assess how effectively the model
maintains the characteristics of the input pixels.

Lastly, the test loss curve function generates simulated loss curve data and plots the training and
validation loss curves. This offers insights into the model’s training process and aids in comprehending its
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convergence and generalization capabilities.
Collectively, these unit tests provide a comprehensive assessment of the model’s functionality, performance,

and training dynamics, which are essential aspects for ensuring the efficacy and reliability of the tritanopia
correction model.

Figure 20: Distributions for Tritanopia Model

Figure 21: Comparative Analysis of Original and Reconstructed Images with Corresponding Pixel Value Dis-
tributions for Tritanopia Model

The unit testing methodology for Deuteranopia focuses on evaluating the performance of a model tailored
for a contrasting color transformation. The tests are organized into three primary components.

Firstly, the test load dataset function verifies the successful loading of the dataset, ensuring that both
input and output images are loaded as NumPy arrays, which is crucial for subsequent processing.

Secondly, the test visualize performance function gauges the model’s performance by illustrating
the transformation of input pixels into reconstructed pixels. It loads test data, employs a pre-trained model to
predict outputs, and plots original and reconstructed images for comparative analysis. Additionally, it visualizes
the distribution of pixel values for both original and reconstructed images to assess how effectively the model
maintains the characteristics of the input pixels.

Lastly, the test loss curve function generates simulated loss curve data and plots the training and
validation loss curves. This offers insights into the model’s training process and aids in comprehending its
convergence and generalization capabilities.

Collectively, these unit tests provide a comprehensive assessment of the model’s functionality, performance,
and training dynamics, which are essential aspects for ensuring the efficacy and reliability of the Deuteranopia
correction model.
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Figure 22: Distributions for Deuteranopia Model

Figure 23: Comparative Analysis of Original and Reconstructed Images with Corresponding Pixel Value Dis-
tributions for Deuteranopia Model

5 Conclusion and Future Scope

The Color Transformation System for Color Blindness Correction represents a significant advancement in as-
sistive technology, specifically tailored to meet the needs of individuals with color vision deficiencies such as
Protanopia, Deuteranopia, and Tritanopia. Leveraging specialized autoencoder models trained on a curated
subset of the COCO 2017 dataset, the system provides precise, real-time color transformations that greatly en-
hance color perception. The intuitive Tkinter-based graphical user interface (GUI) allows users to seamlessly
upload, process, and visualize color adjustments, contributing to an improved user experience.

The system’s accompanying website offers a comprehensive overview of its objectives, methodologies, and
results, enhancing user engagement and demonstrating its practical applications across various fields, including
healthcare, education, and professional settings.

Despite the promising performance metrics of the system, it is essential to address a key limitation: the lack
of real-world testing with individuals who have color vision deficiencies. While the system’s performance in
controlled environments is encouraging, practical efficacy in everyday use cases remains to be fully assessed.
Future work will focus on conducting extensive real-world testing to validate and refine the system’s effec-
tiveness in authentic settings. This step will be crucial in ensuring that the system meets the diverse needs of
colorblind individuals and provides practical solutions in real-world scenarios.

Looking ahead, the Color Transformation System has potential for further development and enhancement.
Future advancements could include expanding the system to handle real-time video color transformations and
integrating more sophisticated machine learning techniques, such as convolutional neural networks (CNNs) and
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generative adversarial networks (GANs), to improve model accuracy and versatility. These enhancements will
aim to broaden the system’s applicability and optimize its performance across various types of content.

In summary, the Color Transformation System marks a significant step forward in assistive technology for
color vision deficiencies. Its innovative approach, effective application of machine learning, and user-friendly
design offer a meaningful solution to the challenges faced by color-impaired individuals. As the system evolves,
it will focus on real-world validation and continued refinement to promote inclusivity, empower users, and
advance personalized assistive technologies.
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