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Abstract

Robot perception involves recognizing the surrounding environment, particularly in indoor spaces like
kitchens, classrooms, and dining areas. This recognition is crucial for tasks such as object identification. Ob-
jects in indoor environments can be categorized into ”things,” with fixed and countable shapes (e.g., tables,
chairs), and ”stuff,” which lack a fixed shape and cannot be counted (e.g., sky, walls). Object detection and
instance segmentation methods excel in identifying ”things,” with instance segmentation providing more
detailed representations than object detection. However, semantic segmentation can identify both ”things”
and ”stuff” but lacks segmentation at the object level. Panoptic segmentation, a fusion of both methods,
offers comprehensive object and stuff identification and object-level segmentation. In implementing indoor
panoptic segmentation, considerations need to be made regarding the variabilities of room conditions, one of
which is contrast. High or low contrast in the room potentially reduces the clarity of the shape of an object,
thus affecting the segmentation results of that object. We experimented with how contrast varieties impact
the panoptic segmentation performance using the MaskDINO model, the top model on the panoptic quality
(PQ) leaderboard. We then improved the model generalization on the various contrasts by re-optimizing it
using a contrast-augmented dataset, resulting in impressive outcomes with a PQ score of 47.7 %, a Recog-
nition Quality score of 56.2%, and a Segmentation Quality (SQ) score of 76%.
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1 Introduction

The rapid development of AI and robotics is increasingly evident over time. Robots in indoor environments
are becoming more common, both in public spaces and within homes. Therefore, there is a need for robot
perception, which involves robot navigation and AI technology in computer vision. Panoptic segmentation is
used to produce detailed representations of each object within a space, which, when robust, can be utilized
in various fields such as tourism as room service assistants, culinary fields as restaurant servers, household
environments as cleanliness assistants, and many more. However, in its implementation, there are several
aspects to consider, one of which is the condition of the room. The conditions of the rooms that a model will
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face will not always be the same. Varied contrast conditions in rooms can affect the model’s performance in
defining object boundaries within the space. The term ”contrast” refers to the differences in lighting and color
among objects in an image. Images with higher contrast levels generally exhibit more significant color variation
than those with lower contrast.

A dataset covering indoor objects is needed to implement panoptic segmentation in indoor environments.
The COCO [1] dataset is one of the datasets that is commonly used to benchmark panoptic segmentation
performances. MaskDINO [2] achieved first place on panoptic segmentation leaderboard [3] with a PQ of
59.5% using the Swin-L backbone, followed by k-Max Deeplab [4] of 58.5%, Mask2Former [5] with a PQ of
58.3%, Panoptic Segformer [6] with a PQ of 56.2%, and many other architectures. Based on the leaderboard
rankings, transformer-based architectures dominate the top positions. Transformer-based architectures utilize
attention mechanisms that selectively focus on the input sequence’s essential parts. While these architectures
outperform others, the attention mechanisms used to measure attention across all classes and objects require
more computation. Therefore, based on the available leaderboard data, the details of implementing panoptic
segmentation are as follows:

1. We filtered data from the COCO dataset to filter images based on specific categories and a predetermined
size of 640x480 pixels.

2. We collected data for additional categories: plugs, toys, boxes, trash bins, fire extinguishers, plates, pans,
stoves, and wallets. We annotated them according to the COCO Panoptic annotation format.

3. We implemented panoptic segmentation using the MaskDINO architecture by adjusting and tuning hy-
perparameters with the available computational resources.

After optimization, a study on the influence of contrast on the segmentation model’s capabilities was con-
ducted. The proposed steps for the experiment are as follows:

1. The model will be evaluated using validation data with contrast settings decreased by 50% and increased
by 50% sequentially, and changes in its PQ, SQ, and RQ will be observed.

2. Then, we proposed to improve the model’s generalization with two options for comparison: contrast
enhancement and contrast augmentation, which will be applied in both the training and evaluation phases.

3. We also conducted model testing on images with varying contrasts and images of indoor objects, the
categories specified in this study, to assess the model’s ability to handle different room contrast conditions
and its capability to segment and recognize objects within the space.

Overall, the model’s ability to generalize object recognition under various contrast conditions is crucial in
enhancing recognition quality in panoptic segmentation, helping the model detect, classify, and distinguish
various objects more accurately and efficiently. Our research results showed an increase in Recognition Quality
(RQ) and Panoptic Quality (PQ) values compared to the baseline model. Consequently, the implication is
that optimizing the panoptic segmentation model can be implemented in robot perception to recognize objects
under various contrast conditions. The model can be integrated into object-based Simultaneous Localization
and Mapping (SLAM) within visual SLAM, helping robots interact with objects around them and assisting in
autonomous navigation.

The rest of the research paper is structured as follows—section 2 covers related work, including panoptic
segmentation and contrast enhancement methods. Section 3 introduces a proposed dataset for indoor objects.
Section 4 outlines the proposed methodology for the research workflow. Section 5 details the experiments and
results, along with a comparison of the suggested strategies for model improvement. Finally, Section 6 presents
the research conclusions and discusses future directions.
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2 Related Works

According to previous research about panoptic segmentation, two common types of architecture are used in
panoptic segmentation: hybrid networks and transformer-based architectures. Hybrid architectures combine
semantic segmentation and instance segmentation networks to segment stuff and things classes simultaneously.
These architectures often incorporate feature fusion modules and multi-task learning approaches to optimize
both segmentation tasks jointly. On the other hand, transformers were introduced by [7] as attention-based
building blocks. The attention [7] mechanism is a neural network layer that merges information from all the
input sequences to capture long-range dependencies and global context information, potentially improving
performance on panoptic segmentation tasks.

Hybrid architectures are implemented on PanopticFPN [8], Panoptic-Deeplab [9], EfficientPS [10], REFINE
[11], Panoptic FCN [12], and K-Net [13], which results in the PQ of 40,3%, 41,2%, 63,9% (on Cityscapes
dataset), 51,5%, and 55,2% sequentially. DETR first utilized transformer in panoptic segmentation [14] model,
which has inspired other models: MaskFormer [15], Panoptic Segformer[6], Mask2Former [5], OneFormer
[16], kMaX-Deeplab [4], and MaskDINO [2], which result in the PQ of 45,1%, 53,3%, 56,2%, 58,3%, 58,5%,
and 59,5% sequentially. The top rankings on the panoptic segmentation leaderboard are mostly transformer-
based architectures. MaskDINO [2] performs best, but the model has not achieved SOTA for large-scale fea-
ture settings. kMax-Deeplab [4] can segment small objects in complex scenes but faces a challenge when
segmenting heavily occluded objects and small objects that are not clear. OneFormer [16] can cut training
time to three times due to its ability to segment images universally (semantic, instance, and panoptic segmenta-
tion). However, misprediction commonly happens across different segmentation tasks. MaskFormer [15] and
Mask2Former [5] are accessible to users with limited computation resources. However, MaskFormer some-
times fails to detect commonly found objects (such as persons), and the Mask2Former model still finds it
difficult to segment small objects. Panoptic Segformer[6] can still not face more extensive special features and
small objects in images.

On the other hand, hybrid architectures tend to be in the lower rankings for panoptic segmentation leader-
boards [3]. K-Net [13] can surpass the Panoptic Segformer and MaskFormer. However, due to its limited kernel,
the model still finds it difficult to segment content with similar textures and all object instances. Panoptic FCN
[12] is computationally efficient, as it avoids the need for fully connected layers and can process images of arbi-
trary sizes in a single forward pass. Nevertheless, the architecture typically involves downsampling operations
that reduce spatial resolution, potentially losing fine-grained details in the segmented output. REFINE [11]
produces better consistency between instance and semantic segmentation, fewer occlusion error estimations,
and fewer false positive predictions. However, the model computation is relatively heavy, and its runtime is
relatively slow. EfficientPS [10] is the most efficient model that achieves inference speed almost in real-time.

Nevertheless, like other non-transformer-based architectures, it has limitations in capturing long-range de-
pendencies or global context information, particularly in complex scenes. It sometimes also fails to segment
images with high contrast. Panoptic-Deeplab [9] can also achieve inference speed in almost real-time. How-
ever, the model still needs post-processing to achieve the final panoptic segmentation result. Panoptic FPN [8]
is the first baseline for panoptic segmentation that is considered efficient due to its FPN architectures.

We proposed the panoptic segmentation research based on MaskDINO due to its highest performance on the
COCO [1] dataset while considering our computational memory constraints. The architecture weakness, which
is the expensive computational cost, can be mitigated by adjusting the training hyperparameter for the model.
MaskDINO [2] is an integrated Transformer-based framework for object detection and image segmentation. It
represents a natural extension of DINO, transitioning from detection to segmentation with minimal modifica-
tions to some essential components. Contrast enhancement improves the visual distinction between different
elements in an image by adjusting the brightness, color, or intensity difference.

Contrast enhancement can be achieved through various methods, such as histogram equalization, contrast-
limited adaptive histogram equalization, contrast stretching, gamma correction, local contrast enhancement, and
unsharp masking. Histogram equalization effectively enhances the overall contrast of the image. It is simple
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and easy to implement because it requires no parameter adjustments. However, it may amplify noise in regions
with low contrast. Contrast-limited adaptive histogram equalization preserves local contrast better than global
histogram equalization, thus making it practical for enhancing details in images with varying illumination.

Several methods are available for image contrast enhancement, each with specific advantages and challenges.
Histogram equalization is a simple technique that enhances overall contrast without requiring parameter adjust-
ments. However, it may amplify noise in low-contrast regions. Contrast-limited adaptive histogram equaliza-
tion (CLAHE) improves local contrast preservation, particularly for images with uneven illumination, but it can
over-amplify noise and artifacts in areas with high contrast variations [17]. Moreover, computing histograms
and performing equalization for each local region is computationally intensive.

Contrast stretching enhances low-contrast images by expanding their intensity range, but it is unsuitable
for images that already have sufficient contrast. Gamma correction effectively addresses non-linear intensity
variations, improving contrast for images displayed on non-linear devices. However, careful tuning of the
gamma parameter is essential, as excessive application may introduce artifacts and distortions.

Local contrast enhancement dynamically adjusts contrast based on regional characteristics, preserving details
in bright and dark areas. While this approach is highly effective, it requires more computational resources due to
its complexity compared to global methods. Unsharp masking sharpens edges and enhances details, improving
perceived sharpness and contrast. However, it may produce halos and artifacts around edges if the sharpening
radius is too large and is less effective for images with subtle or low-contrast details.

Each method has its strengths and limitations, and their suitability depends on the specific requirements of
the application and computational constraints.

2.1 Dataset Benchmark

This section describes the dataset that includes indoor environments used for the experiment. MS COCO (Com-
mon Objects in Context) is a large-scale dataset containing 328,000 images of everyday objects and humans
for object detection, segmentation, and captioning. COCO consists of 133 classes, including 80 thing classes
and 53 stuff classes grouped into several supercategories. Scene categories that include indoor environments
are: library, child’s bedroom, church, dining room, office, auditorium, restaurant, shop, kitchen, house, living
room, hotel, bathroom, classroom, market, factory, cafeteria, campus, hospital room, bedroom, food court, and
plaza [1].

3 Proposed Indoor Environment Dataset

This section discusses the proposed dataset development used for the research.The dataset used for this research
is a custom dataset that combines the COCO Panoptic 2017 dataset with additional images collected from phone
recordings and various internet sources. This mixed-source dataset was specifically designed to reflect diverse
indoor environments, providing a robust foundation for training the panoptic segmentation model. The dataset
includes a broad range of indoor objects and categories, such as furniture, electronics, and other household
items, with a total of 7542 training images, 2756 validation images, and 400 test images. The inclusion of
indoor-specific categories, including plugs, stoves, and fire extinguishers, enhances the dataset’s relevance for
real-world applications in indoor robotic perception.

We captured and recorded several indoor rooms containing indoor objects in the predetermined categories
using a high-quality phone camera from different viewing angles with a fixed scale of 4:3 ratio: bedroom, study
room, and classroom. We also collected images of indoor rooms and objects from many internet sources, the
dataset was further refined through filtering to ensure a consistent image size of 640x480 pixels, and annotations
were created in the COCO Panoptic format. This not only ensured compatibility with existing segmentation
models but also allowed for a detailed, object-level segmentation across both ”things” (countable objects) and
”stuff” (unstructured background elements). The addition of images from diverse sources like smartphones
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and the internet helped to capture variations in lighting, perspectives, and object occlusions, simulating the
variability encountered in real indoor environments.

Moreover, the dataset’s segmentation annotations were provided in both mask and bounding box formats,
enabling a comprehensive approach to panoptic segmentation, where both object recognition and detailed pixel-
level segmentation are performed simultaneously. This combination of diverse categories, annotated data, and
multi-source images made the dataset highly capable of supporting the panoptic segmentation model’s ability to
generalize across different room conditions, lighting situations, and object types, which is critical for real-world
deployment.

3.1 Image Annotation

The proposed dataset annotation follows the COCO Panoptic annotation format, where each per-image annota-
tion should have two parts: (1) a PNG that stores the class-agnostic image segmentation and (2) a JSON struct
that stores the semantic information for each image segment. Data taken from COCO Panoptic 2017 already
has an appropriate annotation format. On data taken from the camera and the internet, images will be labeled
using the innovative polygon feature in the Roboflow application according to predetermined categories. The
results of this labeling will produce annotation information summarized in labelme annotation format.

The labelme annotation format generated per image will be processed in two stages: converted into COCO
Panoptic annotation format and separated based on object categories, things, and stuff, producing two labelme
annotations for each image. The results of the annotation conversion to COCO Panoptic format will be com-
bined into the filtered annotations from the COCO Panoptic 2017 dataset. Then, each annotation is separated
into things and stuff object annotations, which will be converted into a PNG mask annotation, where the con-
version rules for the two types of objects will be different. After generating two PNG mask images for each
image data, the two images are combined using a bitwise function to produce a PNG mask image for panoptic
segmentation.

Table 1: COCO Panoptic JSON Annotation Format Key-Value Pairs Details.

Key Value Example

images The list of information of each
image contains several relevant
information in key-value pairs

Key Value
file_name File name of the im-

age in string
height Height of the image

in integer
width Width of the image in

integer
id Converted file name

into an integer

"images": [
{
"file_name": "000000522418.jpg",
"height": 480,
"width": 640,
"id": 522418

},
{
"file_name": "000000309022.jpg",
"height": 480,
"width": 640,
"id": 309022

} ]
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Tabel 1 COCO Panoptic JSON Annotation Format Key-Value Pairs Details (continued)

Key Value Example

anno-
tation

A list of annotations information
of each image contains several
relevant information in key-value
pairs

Key Value
Segments
_info

The list of segmen-
tation information of
each object in the im-
age contains several
key-value-pairs

File_name File name of the im-
age in string

Image_id Converted file name
into an integer

"annotations": [
{
"Segments_info": [list of
segmentation information specified
in the following table]
,"File_name": "000123.jpg"
"Image_id": 123,
},
{
"Segments_info": "000000309022.jpg",
"File_name": 000125.jpg,
"Image_id": 125,
} ]

cate-
gories

The list of categories information
of each category contains several
pieces of information in key-value
pairs

Key Value
Super
category

Supercategory of the
category in string

isthing Whether the cate-
gory is things or stuff
in a boolean

id Category id in inte-
ger

name Category name in
string

"categories": [
{

"supercategory": "person",
"isthing": 1,
"id": 1,
"name": "person"

},
{

"supercategory": "furniture",
"isthing": 1,
"id": 65,
"name": "bed"

},
{

"supercategory": "wall",
"isthing": 0,
"id": 171,
"name": "wall-brick"

}
]

The annotation format are shown in Table 1. The annotation information contains several nested key-value
pairs specified in the Table 2 For training MaskDINO, instances annotation is also required, which can be gained
from COCO Panoptic 2017 from COCO Instances 2017. For the images captured from a phone and collected
from the internet, the annotation process utilizes labelme annotations for things only, which are converted into
COCO Instances annotation format and merged with the filtered annotation from COCO Instances 2017. The
annotation stages are as follows:

1. The images are annotated in polygon.

2. Each instance of ‘things’ object segments on an image is assigned distinct colors for PNG annotations.

3. Each ‘stuff’ object segment is assigned to the same color for the same category. Each stuff category is
represented in a different color.

4. For a group of objects that belongs to the same category (e.g., a pile of books relevant to the things
category only), set the iscrowd value in the JSON annotation to 1.
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4 Proposed Methodology

Our experiment is focused on analyzing the impact of contrast change on the performance of the panoptic seg-
mentation and increasing the model generalization on various image contrast settings using several approaches.
This section describes the existing MaskDINO architecture, contrast enhancement, augmentation methods, and
the research workflow.

4.1 MaskDino

MaskDINO [2] advances the DINO [18] architecture. DINO is a distinctive model of DETR [14], consisting
of a backbone, encoder transformer, and decoder transformer. MaskDINO architecture is based on the DINO

Figure 1: MaskDINO architecture

architecture (blue box) with slight modifications (red lines) for segmentation. In the decoder transformer,
MaskDINO adds a mask branch for segmentation and includes several components in DINO for segmentation.

In the backbone, feature extraction produces feature maps with resolutions scaled at 1/4, 1/8, 1/16, and
1/32. In the segmentation branch, mask classification is performed for all segmentations using pixel embedding
maps obtained from the backbone and encoder transformer features. In Figure 1, the pixel embedding map is
generated by merging 1/4 resolution feature maps from the backbone and 1/8 resolution feature maps from the
encoder transformer. Dot-product multiplication is performed on each content query embedding qc from the
decoder with the pixel embedding map to generate the output mask m.

m = qc
⊗

M(T (Cb) + F(Ce)) (1)

Where M is the segmentation head, T represents the convolutional layer to map its channel dimensions to
hidden dimensions in the transformer, and Frepresents a simple interpolation function to perform 2x upsam-
pling on Ce. In MaskDINO, unified query selection is used to predict boxes and masks in the encoder and
select the best one to start the query in the decoder. The selected mask and box serve as better initial references
for the decoder. Then, unified denoising for masks accelerates convergence and improves performance, where
the ground truth boxes containing noise and their labels are ingested in the decoder. The model is trained to re-
construct these ground truth boxes and masks. Hybrid matching is then performed to address the inconsistency
in predictions of box-mask pairs generated from each head. This method performs bipartite matching between
boxes and masks to encourage more accurate matching results.
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For panoptic segmentation, box predictions for stuff categories are not required. Therefore, the box loss
value and matching for stuff categories are removed. More specifically, the box prediction flow remains the
same for stuff to find relevant areas and extract features with flexible attention. However, the box prediction
loss value is not calculated and set to the average box prediction loss value for thing categories, which is done
to accelerate model training.

Table 2: COCO Panoptic JSON Nested Key-Values Pairs Details in ‘annotations’ value.

Image Key Value Example

segments_-
info

The list of segmentation
information of each of the
objects in the image contains
several key-value pairs

Key Value
id Segmentation ID in

integer
category_-
id

Category id in inte-
ger based on cate-
gories list

iscrowd Whether the object is
crowded in a boolean
(0 or 1)

bbox Object bounding
box coordinate in
[x,y,width, height]
format

area Polygon area of the
object in integer

"segments_info": [
{
"id": 10462136,
"category_id": 70,
"iscrowd": 0,
"bbox": [420, 295, 141, 147],
"area": 16594
},
{
"id": 12173263,
"category_id": 81,
"iscrowd": 0,
"bbox": [149, 128, 268, 99],
"area": 18368
},
{
"id": 5008036,
"category_id": 112,
"iscrowd": 0,
"bbox": [0, 72, 151, 408],
"area": 32929
},
{
"id": 3099247,
"category_id": 118,
"iscrowd": 0,
"bbox": [ 90, 345, 531, 135],
"area": 40029
},
{
"id": 8622508,
"category_id": 133,
"iscrowd": 0,
"bbox": [197, 0, 220, 115],
"area": 22227
},
{
"id": 10462914,
"category_id": 195,
"iscrowd": 0,
"bbox": [463, 140, 41, 44],
"area": 1536
},
{
"id": 5002597,
"category_id": 199,
"iscrowd": 0, "bbox": [0, 0,
640, 420],
"area": 116564
}
]
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Tabel 2 COCO Panoptic JSON Annotation Format Key-Value Pairs Details (continued)

Image Key Value Example

File_-
name

File name of the image in
string "file_name": "000000061422

.png"

Image_id Converted file name into an
integer "image_id": 61422

4.2 Modified Configuration For MaskDINO

We applied several modifications to enable the MaskDINO architecture to parse our custom dataset. This
experiment used additional categories merged with the benchmark COCO Panoptic categories. Since there are
additional new categories to the dataset, we modified the number of categories and the list of categories in the
built-in metadata for the mask classification. This step is crucial to take before beginning training to ensure the
correct categories assignment.

Throughout our experimentation with the custom dataset, we encountered a scenario where the trained model
struggled to assign segmented images to any predefined category within the list. This issue surfaced as an error
during the visualization of segmented images. To address this challenge, we created an additional function to
assign unallocated segments to a list of unknown categories, enhancing the model’s adaptability and effectively
processing image or video inputs with diverse content and conditions crucial for the model testing on new
unseen data.

4.3 Modified Preprocessing for MaskDINO

We experiment with various image contrast conditions, and several contrast settings and contrast enhancement
methods are used for performance comparison. The input images are preprocessed using the validation set with
several contrast value settings and contrast enhancement methods and evaluated one by one per setting and
method. We used fixed contrast values of +50% and -50% for the contrast settings from the original image with
a probability of 1. The contrast enhancement shows in figure 2 dan Figure 3

4.3.1 Histogram Equalization (HE)

Histogram Equalization is a digital image processing technique that enhances contrast in images achieved
by spreading out the most frequently occurring intensity values, effectively stretching the intensity range of
the image. This method typically enhances the global contrast in an image when the available data can be
represented by values close to contrast. This method allows areas with lower local contrast to gain higher
contrast [19]. Color histograms in an image represent the number of pixels in each color component. Histogram
equalization cannot be applied separately to the image’s red, green, and blue components because it would
drastically change the image’s color balance. However, suppose the image is first converted to another color
space, such as the HSL/HSV color space. In that case, this algorithm can be applied to the luminance channel
or value without altering the hue and saturation of the image.

4.3.2 Contrast Limited Adaptive Histogram Equalization

Contrast Limited Adaptive Histogram Equalization (CLAHE) is a variation of histogram equalization that limits
the contrast value to prevent over-amplification of the contrast. CLAHE operates on the image segment result,
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Figure 2: Comparison graph of RGB value distribution before (left side) and after (right side) Histogram
equalization

Figure 3: Comparison of RGB images from the graph in Fig 2 before (left side) and after (right side)
histogram equalization

called the grid, rather than the entire image [20]. Adjacent tiles are then combined using bilinear interpolation
to remove artificial boundaries. CLAHE is defined by two parameters: tileGridSize and Clip Limit (CL).
TileGridSize assigns the number of tiles in the image row and column. CL assigns the contrast threshold [20].

Figure 4: Comparison graph of RGB value distribution before (left) and after (right) CLAHE with clip limit of
3 and tile grid size of 8 x 8

4.3.3 Gamma Correction

Gamma correction is a technique used to adjust the contrast and brightness of an image through a power law
transformation. This transformation alters the gray levels of the input image to produce an enhanced output
image. Denoting the gray levels of the input and output images as r and s, respectively, the transformation
function can be expressed as:

s = T (r)
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Figure 5: Comparison of RGB images from the graph in Fig 4 before (left) and after (right) CLAHE with clip
limit of 3 and tile grid size of 8 x 8

In this transformation, the brightness enhancement is achieved by adjusting the r values to obtain corresponding
s values. The formula gives the Power Law Transformation:

s = c ∗ rγ (2)

Utilizes the parameter γ (gamma) to control the transformation. By varying γ, different results can be obtained,
allowing for gamma correction to optimize the output image. For γ < 1, the darker regions of the original image
become brighter, shifting the histogram towards the right. Conversely, for γ > 1, the opposite effect occurs,
leading to adjustments in brightness and contrast accordingly.

Figure 6: Comparison graph of RGB value distribution before (left side) and after (right side) gamma
correction with γ = 0.5

4.4 Contrast Enhancement on Various Color Spaces

We ensure compatibility with various image representations, and contrast enhancement methods are tested in
three color spaces: RGB, grayscale, and CMYK. We first converted the original images to the desired color
space. Then, we applied histogram equalization to the converted images. The result examples are as follows
in Table 3. Based on the table above, no results differ between the RGB and CMYK images after applying
contrast enhancement. Therefore, the methods apply to both RGB and CMYK images. The methods also apply
to grayscale images, resulting in relatively clear enhanced images, similar to the RGB and CMYK images.
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Figure 7: Comparison of RGB images from the graph in Fig 7 before (left) and after (right) gamma correction
with γ = 0.5

4.5 Modified Augmentation for MaskDINO

Image augmentation is a method to artificially create images based on the data images given through diverse
processing or a combination of multiple processing methods. Image augmentation artificially expands the
dataset to improve the model’s generalization ability. The original augmentation methods are large-scale jit-
tering and a size crop of 1024 x 1024. In this experiment, we use additional augmentation methods for two
purposes:

1. to increase some of the category’s representation and balance the category’s representations.

2. to improve the model generalization toward various contrast settings.

For the first purpose, we applied horizontal flip, rotate by 30°, rotate by 15°, horizontal flip + rotate by 30°,
horizontal flip + rotate by 15°, brightness decreased by 30 %, and brightness increased by 30 %. These will
only be applied to the least represented categories and training-validation sets. For the second purpose, we
applied fixed contrast values of +50 % and -50 % with a probability of 1. The augmentation mechanism for the
second purpose is applied after the model is optimized without any augmentation.

Based on the table above, no results differ between the RGB and CMYK images after applying contrast
enhancement. Therefore, the methods apply to both RGB and CMYK images. The methods also apply to
grayscale images, resulting in relatively clear enhanced images, similar to the RGB and CMYK images.

4.6 Modified Augmentation for MaskDINO

Image augmentation is a method to artificially create images based on the data images given through diverse
processing or a combination of multiple processing methods. Image augmentation artificially expands the
dataset to improve the model’s generalization ability. The original augmentation methods are large-scale jit-
tering and a size crop of 1024 x 1024. In this experiment, we use additional augmentation methods for two
purposes:

1. to increase some of the category’s representation and balance the category’s representations.

2. to improve the model generalization toward various contrast settings.

For the first purpose, we applied horizontal flip, rotate by 30°, rotate by 15°, horizontal flip + rotate by 30°,
horizontal flip + rotate by 15°, brightness decreased by 30 %, and brightness increased by 30 %. These will
only be applied to the least represented categories and training-validation sets. For the second purpose, we
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applied fixed contrast values of +50 % and -50 % with a probability of 1. The augmentation mechanism for the
second purpose is applied after the model is optimized without any augmentation.

Table 3: Contrast enhancement results on RGB, grayscale, and CMYK color spaces

Step RGB Grayscale CMYK

original
image

After HE

After CLAHE

After gamma
correction

5 Result and Discussion

We evaluated the performance of the MaskDINO model on the proposed dataset. The dataset comprises 7542
train images and 2756 validation images with nine additional categories (plug, plate, pan, box, toy, trash bin,
wallet, fire extinguisher, and stove). The details of the data are as follows in Table 4 and Table 5.
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Table 4: Dataset distribution across training, validation, and test sets.

Source Train set Validation set Test set

COCO Panoptic 2017 2999 1021 -
Internet and phone recording 371 156 360
Augmentation 4172 1579 40

Total 7542 2756 400

Table 5: Categories used in the dataset

No Super Category Category No Super Category Category
1 Person Person 38 Raw Material Cardboard
2 Electronic Laptop 39 Paper
3 TV 40 Food-stuff Food-other-merged
4 Mouse 41 Accessory Handbag
5 Keyboard 42 Backpack
6 Cell phone 43 Wallet*
7 Plug* 44 Furniture-stuff Chair
8 Appliance Microwave 45 Dining table
9 Oven 46 Couch

10 Toaster 47 Bed
11 Sink 48 Toilet
12 Refrigerator 49 Table-merged
13 Kitchen Spoon 50 Mirror-stuff
14 Bowl 51 Counter
15 Fork 52 Cabinet-merged
16 Knife 53 Door-stuff
17 Plate* 54 Light
18 Pan 55 Stairs
19 Stove* 56 Potted plant
20 Cup 57 Window Window-blind
21 Bottle 58 Window-other
22 Indoor Book 59 Ceiling Ceiling-merged
23 Vase 60 Wall Wall-brick
24 Trash bin* 61 Wall-wood
25 Fire extinguisher* 62 Wall-stone
26 Box* 63 Wall-tile
27 Toy* 64 Wall-other-merged
28 Clock 65 Floor Floor-wood
29 Scissors 66 Floor-other-merged
30 Teddy bear
31 Hair drier
32 Toothbrush
33 Textile Blanket
34 Curtain
35 Pillow
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Tabel 5 Categories used in the dataset (continued)
No Super Category Category No Super Category Category
36 Towel
37 Rug-merged

5.1 Training Stage

Fine-tuning the MaskDINO model for this specific task involved several critical steps to adapt it to the varied
and complex nature of indoor environments. Initially, the model was trained on the base dataset with standard
hyperparameters, but the real improvement came through fine-tuning for contrast handling and further model
optimization using the contrast-augmented dataset.

The primary focus during fine-tuning was to address the challenges posed by different contrast conditions
in indoor images. To do this, the contrast values of the training data were augmented using fixed increases and
decreases of 50 %, simulating lighting variations typically found in indoor spaces. This augmentation allowed
the model to adapt to different lighting conditions, helping it recognize and segment objects more effectively,
regardless of the contrast in the environment. This approach was a key differentiator from traditional contrast
enhancement methods, which require preprocessing steps before model training. By applying contrast aug-
mentation during the training phase, the model was able to learn to generalize across various contrast scenarios,
resulting in better performance on unseen data with differing lighting conditions.

In addition to contrast handling, further fine-tuning was done by adjusting the training process to optimize
for the specific indoor categories included in the dataset. The model’s architecture was modified to account
for additional categories beyond the typical COCO Panoptic dataset, such as appliances and household items.
This required adjustments to the MaskDINO model’s category configuration and the fine-tuning of its backbone
(ResNet50) and learning rate settings. The learning rate was gradually decreased, and batch size was adjusted
to accommodate the limitations of the hardware (V100 GPU with 16GB memory). This fine-tuning process
helped improve the model’s convergence and performance.

Augmentation strategies were also refined during this phase. For example, random horizontal flips, rotations,
and brightness adjustments were applied to enhance the model’s ability to handle spatial variations and lighting
changes within indoor environments. Additionally, contrast augmentation, involving both contrast increase and
decrease during the training phase, allowed the model to adapt to a wider range of lighting conditions without
requiring additional contrast enhancement techniques like Histogram Equalization (HE) or CLAHE during the
testing phase. This made the model more flexible and robust in various indoor settings.

Through these fine-tuning efforts, the model achieved significant improvements in segmentation and recogni-
tion quality, particularly in its ability to handle various contrast settings without overfitting to a specific contrast
condition. The training procedure also involved experimenting with different contrast enhancement techniques
(such as HE, CLAHE, and gamma correction), which further refined the model’s performance, although con-
trast augmentation was found to provide the most significant impact on generalization.

Due to the resource limitation, the batch size was reduced from 16 to 2 for the hyperparameter settings. The
model used the ResNet50 backbone and is trained for 45 × 4999 iterations. The initial learning rate was also
reduced 1

8 times from 1 × 10−4 to 1.25 × 10−5. We also changed the lr scheduler mechanism, from dropping
the lr by 0.1 times at the 11th epoch for the 12-epochs setting and the 20th epoch for the 24-epochs setting to
dropping the lr by 0.1 times if the PQ did not improve in 1× 4999 iterations.

5.2 Evaluation and Preprocessing Stage

The evaluation provides all the performance metrics information on the trained model, including PQ, PQth,
PQst, RQ, RQth, RQst, SQ, SQth, and SQst. Once the model has reached the best PQ, it is going to be
re-evaluated by preprocessing the image data with several contrast settings and contrast enhancement methods
one by one, which are:
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1. Contrast increase by 50 %

2. Contrast decreased by 50 %

3. Histogram equalization

4. Gamma correction with γ = 0.5

The evaluation of contrast settings is conducted to compare the performance of the model for each setting,
and the evaluation of contrast enhancement methods is conducted to analyze the effectiveness of each method
in improving the model performance.

5.3 Testing Stage

The testing aims to test the model segmentation ability on new unseen data. For the contrast experiment, each
image will be tested in four different settings: original image, image increased by 50%, image decreased by
50%, and image using histogram equalization. The model will be tested in each setting, and each segmentation
result will be analyzed for the segmentation existence and recognition precision. For the categories experiment,
each image containing the category(s) will be tested and analyzed for segmentation and recognition ability and
instance segmentation ability for things categories.

5.4 Augmentation Stage

Augmentation is applied to the training data to increase some of the category’s representation and balance
the categories’ representations. We applied horizontal flip, rotate 30◦, rotate 15◦, horizontal flip + rotate 30◦,
horizontal flip + rotate 15◦, brightness decreased by 30%, and brightness increased by 30%.

We proposed contrast augmentation to improve the model generalization if the contrast enhancement method
is not enough for the improvement. We first applied a contrast decrease of 50% to the training and validation
data until the model was optimized. Then, we applied a contrast increase of 50% and re-optimized the model.

5.5 Experimental results and analysis

The metrics used for the panoptic segmentation evaluation are as follows: PQ, PQth, PSst, RQ, RQth, RQst,
SQ, SQth, and SQst. SQ, or segmentation quality, is the metric to measure the model’s ability to segment
each object, where SQth is an average SQ for all categories, SQth for things categories, and SQst for stuff
categories. RQ, or recognition quality, is the metric used to measure the model’s ability to recognize the
object after it is segmented. Panoptic Quality (PQ) is the multiplication of SQ and RQ. The formula for PQ
computation is as follows:

PQ =

(∑
(p,g)∈TP IoU(p, g)

|TP |

)
×

(
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |

)

where : The formula
∑

(p,g)∈TP IoU(p,g)

|TP | is segmentation quality (SQ), and |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN | is recognition

quality (RQ) with the requirement that a predicted segmentation and the ground truth segmentation can match
(considered true positive (TP)) only if their intersection over union (IoU) is strictly greater than 0.5. True
positive is in the context of SQ, every segmentation that is predicted true or matches with the ground truth, and
in the context of RQ and category A, is every object that is recognized correctly as category A. False positive
in the context of RQ and category A, is every object that is supposed to be recognized as other categories, but
is falsely recognized as category A. False negative in the context of RQ and category A, is every object that is
supposed to be recognized category A, but falsely recognized as another category.
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Table 6: Comparative analysis of PQ, SQ, and RQ of proposed MaskDINO model from different contrast
settings for 45 x 4999 iteration

Contrast setting PQ (all) PQth PQst SQ (all) SQth SQst RQ (all) RQth RQst

No modification 47.2 50.2 43 79.5 83.8 73.4 55.5 57.9 52.3
Increase by 50% 41.0 44.4 36.4 77.8 82.2 71.8 48.9 51.5 45.2
Decrease by 50% 38.2 41.6 33.5 74.2 77.8 69.2 45.7 48.6 41.8

Based on the table 6, changes in contrast value affect the model performance. Either increased or decreased
contrast decreased the value of the overall metric. We then compared several of the mentioned contrast en-
hancement methods in the table below.

Table 7: Comparative analysis of PQ, SQ, and RQ of proposed MaskDINO model from different contrast
enhancement methods for 45 x 4999 iterations

Contrast setting PQ (all) PQth PQst SQ (all) SQth SQst RQ (all) RQth RQst

No modification 47.2 50.2 43 79.5 83.8 73.4 55.5 57.9 52.3
HE 39.2 42.7 34.4 75.3 77.2 72.6 46.7 49.7 42.4
CLAHE 41.6 46.1 35.4 78.4 83.2 71.7 49.2 52.9 44
Gamma correction 45.2 48.3 40.9 81.6 87.4 73.4 52.7 54.8 49.7

Based on the table 7, either contrast enhancement is ineffective as it does not increase the overall PQ. How-
ever, without modification, gamma correction can surpass the overall SQ from the images. Gamma correction
can improve images’ overall quality by enhancing contrast and brightness. By adjusting the gamma value,
which controls the relationship between pixel values and displayed brightness, gamma correction can effec-
tively reveal details in the image’s dark and light areas. This method can lead to more precise and more visually
appealing images, making edges and objects within the image stand out more prominently. Even though gamma
correction can achieve better SQ performance, it does not achieve a better RQ. Gamma correction can some-
times introduce unwanted color shifts in the image, resulting in unnatural or distorted colors, affecting the
model’s ability to recognize the objects within the image. This condition also goes for histogram equalization
and CLAHE.

We then analyzed the panoptic segmentation result difference on the original image, decreased contrast and
increased by 50% images, and applied histogram equalization image.

Table 8: Comparative analysis of the panoptic segmentation result of the proposed MaskDINO model from
different contrast settings for 45 x 4999 iterations

Contrast Setting Test Image Panoptic Segmentation Result

-50%
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Table 8: Comparative analysis continued
Contrast Setting Test Image Panoptic Segmentation Result

0

+50%

Using HE

Based on the results at tabel 8, several objects failed to be segmented, and some objects were segmented
but failed to be recognized in different contrast settings. For instance, in the image with contrast decreased
by 50%, the model failed to segment the lights, the window blinds, and the wooden floor. The model failed
to segment the pillows and recognize the book in the histogram equalization image. The model also failed
to segment curtains and recognize the window blind. We then proposed the second option, which is to apply
contrast augmentation. We used the previous base model and continued the training with the same batch size
and the last learning rate value. The training took 11 x 4999 additional iterations to reach the PQ value higher
than the base model PQ value.

Table 9: Comparative analysis of PQ, SQ, and RQ of proposed MaskDINO model from different contrast
enhancement methods for 45 x 4999 iterations

Contrast setting PQ (all) PQth PQst SQ (all) SQth SQst RQ (all) RQth RQst

Base Model 47.2 50.2 43 79.5 83.8 73.4 55.5 57.9 52.3
HE 47.7 50.4 44 76 77.8 73.4 56.2 58.2 53.6
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Table 10: Comparative analysis of the panoptic segmentation result of MaskDINO base model and
contrast-augmentation-optimized from different contrast settings (CS)

CS Base Model Contrast-augmentation-optimized model

seg

0

+50%

Using
HE

The details of whether objects in the image are segmented and recognized can be seen 11
Based on the comparison of object representation (Table 11 and Table 12), the contrast-augmentation-
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Table 11: Object representation on base-model for Segmentation (Seg) and Recognition (Recog)

Object contrast -50% No contrast setting contrast +50% HE
Seg Recog Seg Recog Seg Recog Seg Recog

Ceiling-merged Yes Yes Yes Yes No No Yes Yes
Wall-brick No No Yes Yes Yes Yes Yes Yes
Wall-other-merged Yes Yes Yes Yes Yes Yes Yes Yes
Floor-wood No No Yes Yes Yes Yes Yes Yes
Window-blind No No Yes No Yes No Yes No
Window-other No No Yes Yes Yes Yes No No
Rug-merged Yes Yes Yes Yes No No Yes Yes
Counter Yes No No No No No Yes No
Table-merged Yes Yes Yes Yes Yes Yes Yes Yes
Oven Yes No Yes No Yes No Yes No
Light No No Yes Yes Yes Yes Yes Yes
Couch Yes Yes Yes Yes Yes Yes Yes Yes
Chair Yes Yes Yes Yes Yes Yes Yes Yes
Clock Yes Yes Yes Yes Yes Yes Yes Yes
TV No No No No No No No No
Book No No Yes No No No Yes No
Pillow Yes Yes Yes Yes No No No No

optimized model produced slightly fewer segmentation and recognition mistakes than the base model. The
contrast-augmentation-optimized model made one less segmentation mistake, which is 19 mistakes, than the
base model, which is 20. The contrast-augmentation-optimized also made one less recognition mistake, ten
mistakes, than the base mode, which made 11 mistakes.

However, due to the insignificant mistake differences, the contrast-augmented-optimized model is tested on
images with various contrasts, including images that consist of dark and bright areas, rooms with similar color
objects, and dim rooms.

Table 13: Segmentation (Seg) for Contrast Test Result

No Test Image Without Contrast Setting With Contrast Setting

1
Original
Image

setting : Histogram equilization
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Tabel 13 Segmentation (Seg) for Contrast Test Result (continued)
No Test Image Without Contrast Setting With Contrast Setting

Seg
Result

2
Original
Image

setting : contrast decreased by 50 %

Seg
Result
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Tabel 13 Segmentation (Seg) for Contrast Test Result (continued)
No Test Image Without Contrast Setting With Contrast Setting

3
Original
Image

setting : contrast increased by 50 %

Seg
Result

4
Original
Image

setting : contrast increased by 50 %

Seg
Result
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Tabel 13 Segmentation (Seg) for Contrast Test Result (continued)
No Test Image Without Contrast Setting With Contrast Setting

5
Original
Image

setting : contrast increased by 50 %

Seg
Result

6
Original
Image

setting : histogram equilization

Seg
Result

Based on Table 13, the segmentation result in both with and without contrast setting images produced similar
results. In images 1 and 6, histogram equalization is applied to the image. Although it created a more refined
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Table 12: Object representation on contrast-augmentation-optimized model for Segmentation (Seg) and
Recognition (Recog)

Object contrast -50% No contrast setting contrast +50% HE
Seg Recog Seg Recog Seg Recog Seg Recog

Ceiling-merged Yes Yes Yes Yes Yes Yes Yes Yes
Wall-brick Yes Yes Yes Yes Yes Yes Yes Yes
Wall-other-merged Yes Yes Yes Yes Yes Yes Yes Yes
Floor-wood No No Yes Yes No No Yes No
Window-blind No No Yes No Yes No Yes No
Window-other No No Yes Yes Yes Yes No No
Rug-merged Yes Yes Yes Yes Yes Yes Yes Yes
Counter Yes No No No No No No No
Table-merged Yes Yes Yes Yes Yes Yes Yes Yes
Oven Yes No Yes No Yes No Yes No
Light No No Yes Yes Yes Yes Yes Yes
Couch Yes Yes Yes Yes Yes Yes Yes Yes
Chair Yes Yes Yes Yes Yes Yes Yes Yes
Clock Yes Yes Yes Yes Yes Yes Yes Yes
TV No No No No No No No No
Book No No No No No No No No
Pillow No No Yes Yes No No No No

contrast in image 1, the image gained noise from it, which can be seen from the wall segmentation that did
not fully cover the wall area and the table that is not segmented. In image 6, histogram equalization made the
objects’ color change, which could affect the object’s characteristic representation. It can be seen from the
toilet segmentation that it did not fully cover the toilet area.

The model can perform panoptic segmentation without any additional contrast preprocessing. On the other
hand, histogram equalization can not be applied universally to all types of images because it could produce
noise and change the object characteristics, affecting the model’s ability to represent the object. We then show
several examples of the model panoptic segmentation qualitative result on several objects and compare the
model quantitative performance to another method, which is the double-encoder network for RGB-D panoptic
segmentation [21].

Table 14: Qualitative results of the panoptic segmentation model

Input RGB Panoptic Segmentation Result
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Table 14: Qualitative results of the panoptic segmentation model (continued)
Input RGB Panoptic Segmentation Result
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Table 14: Qualitative results of the panoptic segmentation model (continued)
Input RGB Panoptic Segmentation Result

Table 15: Comparison with other methods of panoptic segmentation in the indoor environtment

Method Dataset PQ

Double-encoder network with ResidualExcite [21] ScanNet 40.87
Double-encoder network with ResidualExcite [21] HyperSim 38.67
MaskDino COCO Panooptic, Open image 47.70

primary dataset

In [21], ScanNet [22] and HyperSim [23] datasets are used for benchmarking. ScanNet contains real-world
images organized in 1,513 scenes. HyperSim is a photorealistic synthetic dataset of indoor objects organized in
461 scenes. Our method uses a filtered COCO Panoptic 2017 dataset, additional open source images collected
from the internet, and primary dataset which taken from phone recording for benchmarking. Based on the result
above, our method still outperforms the previous method.

Table 16: Several Segmentation and Recognition mistakes in the proposed model

No RGB Input Panoptic Segmentation Result

1

2
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Table 16: Several Segmentation and Recognition mistakes in the proposed model(continued)
No RGB Input Panoptic Segmentation Result

3

4

5

6

However, we also found some limitations in our method. From Table 16 we perform in Figures number 1,
2, and 3, the model fails to recognize the objects correctly, where the socket is recognized as a microwave,
the plates are recognized as bowls, and some parts of the forks are recognized as knives. This result could be
because some object’s characteristics are similar. For instance, the socket looks similar to a microwave button,
the plates have a similar size, color, and dimension to bowls, and the forks are recognized as knives due to the
light reflection on the fork handle that looks similar to a knife.

Our other limitation is found in Figures 4, 5, and 6. The model fails to segment some of the object instances.
This result could be because other objects occlude some parts of the object. In Figure 4, some part of the
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pink bowl is occluded by the yellow bowl, which causes an incomplete segmentation of the pink bowl. In
Figure 5, the spoons are piled up onto each other and cause occlusion to one another. This condition can cause
ambiguity in each spoon edge definition; hence, the model fails to segment them. Another possible factor is a
low-resolution image. In Figure 6, the image dimensions are lower than those used in the dataset, which are
339 X 419 pixels. Low-resolution images tend to have fewer details and blurry object edge representation, thus
making it difficult for the model to define the object segments.

6 Conclusion

This paper presented an approach to implementing panoptic segmentation for indoor environments and a
method to mitigate various contrast challenges. Our method of using contrast augmentation can increase model
generalization and reduce mistakes when handling various contrasts without additional contrast enhancement
preprocessing. Our approach to using MaskDINO as the architecture and multiple indoor-related image sources
as the dataset can outperform the previous method. Improved the model generalization on the various contrasts
by re-optimizing it using a contrast-augmented dataset, resulting in impressive outcomes with a PQ score of
47.7%, a Recognition QuConality score of 56.2%, and a Segmentation Quality (SQ) score of 76%. These
challenges highlight areas for future research and improvement. Specifically, addressing the model’s perfor-
mance on low-resolution images and refining occlusion handling could significantly enhance its robustness
and applicability in real-world scenarios, indicating areas for future improvement. Future research could focus
on enhancing model performance for low-resolution images, addressing occlusion challenges, implementing
adaptive contrast adjustments, and expanding the model’s scalability for real-world deployment, particularly in
autonomous robotic systems operating in dynamic indoor environments.
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