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Abstract

Extracting math formulas from images of scientific documents and converting them into structured data
for storing in the database is the premise of their further utilization. As math formulas are hard to extract
and recognize automatically, rapidly, and effectively, we proposed a deep learning-based system. Firstly, this
system exploits the pre-trained YOLOv8 model and fine-tunes it using the mathematical formula dataset and
specific combination features to detect and classify the formula inside and outside the text. Once extracted,
we developed a robust end-to-end math formula recognition system. This system automatically identifies
and classifies math symbols using Faster R-CNN for object detection. It then employs a Convolutional
Graphical Neural Network (ConvGNN) to analyze the layout of the math formula. This approach is ef-
fective because the formula can be better represented as a graph that captures complex relationships and
dependencies among objects. ConvGNN can predict formula linkages without resorting to laborious fea-
ture engineering. Experimental results on the IBEM and CROHME 2019 datasets reveal that the proposed
approach can accurately extract isolated formula with mAP of 99.3%, embedded formulas with mAP of
80.3%, detect symbols with mAP of 87.3%, and analyze formula layout with an accuracy of 92%. We also
showed that our system is competitive with related work.

Key Words: Formula extraction and recognition, Symbol detection and classification, formula layout analy-
sis, YOLOv8, Faster R-CNN, ConvGNN.

1 Introduction

Over the past twenty years, there has been an increased focus on Automatic Technical Documents Processing
and Understanding (TDPU) due to its significant practical uses. TDPU builds upon previous advancements
in OCR, natural language understanding, pattern recognition, and image understanding. Within the field of
TDPU, there is a specific sub-area dedicated to understanding math formulas. This area focuses on detecting
math formulas within documents and utilizing parsing methods to understand the formulas. More precisely, to
understand mathematical formulas in documents, the process is divided into four sub-processes. First, identifi-
cation and segmentation focus on detecting and isolating formulas in documents. Secondly, symbol recognition
is utilized in formulas. Thirdly, layout recognition is used to identify the spatial relationships among symbols.
Lastly, content representation and analysis aim to compute the outcome of the math formulas.
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As shown in Figure 1, formulas have a precise syntax requiring accurate content knowledge and a secure
spatial delimitation. Mathematical formulas are frequently integrated within regular text in images of scientific
documents. They can vary from numbers and variable names.

Figure 1: An example of processing a page of the IBEM dataset. Embedded math formulas are in green, and
isolated ones are in yellow. [13]

It is worth noting that while significant progress has been made in recent years, math formula extraction
from images and their recognition are still active research areas, and there may not be a perfect solution for
all scenarios. Each document’s unique characteristics may require customized approaches and techniques for
accurate extraction and recognition. Here are some common problems encountered during the process:

• Image Quality: The quality of the image itself can greatly impact the accuracy of math formula extrac-
tion. Blurriness, low resolution, noise, or uneven lighting can make it challenging for optical character
recognition (OCR) algorithms to interpret the symbols and structure of the formulas correctly.

• Complex Notation: Mathematical notation can be highly complex and varied, including symbols, super-
scripts, subscripts, fractions, integrals, matrices, and other mathematical constructs. Dealing with such
intricate structures requires sophisticated algorithms capable of accurately understanding and parsing the
different elements.

• Symbol Recognition: Mathematical symbols can have different fonts, styles, and variations, making
symbol recognition a difficult task. OCR algorithms might struggle with accurately identifying less
common symbols or symbols with ambiguous representations.
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• Contextual Understanding: Math formulas often rely on the context provided by surrounding text or
equations to infer their meaning correctly. Extracting formulas in isolation without considering the sur-
rounding text can lead to misinterpretation or incorrect parsing.

• Layout and Alignment: The layout and alignment of math formulas within the document can vary, such
as inline formulas, displayed formulas, or formulas within tables or captions. Handling these different
layouts and aligning the extracted formulas properly can be challenging.

• Handwritten Formulas: In some cases, scientific papers may include handwritten formulas, which intro-
duce additional complexity. Recognizing and accurately transcribing handwritten symbols and formulas
can be significantly more challenging than dealing with printed text.

Addressing these challenges requires combining techniques, including image preprocessing, OCR algo-
rithms specialized in math formula recognition, context-aware parsing, and post-processing steps to refine
the extracted formulas. Additionally, training data that specifically includes a wide range of math notation and
symbol variations can improve the performance of the extraction process.

Traditional rule-based techniques for math formula extraction do not scale well across a wide range of
formula types. They could be more robust for expressions with slight typos and lexical ambiguities. This work
employs deep learning classifiers to identify math formulas in a given document image. We used the YOLOv8
for object detection, image classification, and instance segmentation tasks. While YOLOv8 is a general-purpose
object detection model, it can be advantageous for math formula detection due to the following reasons:

• Real-time Detection: YOLOv8 is known for its fast inference speed, making it suitable for real-time or
near real-time applications. This can benefit math formula detection, especially when quick and efficient
processing is required.

• Simplicity and Efficiency: YOLOv8 follows a single-stage detection approach, directly predicting bound-
ing boxes and class probabilities in a single pass through the network. This simplicity makes YOLOv8
computationally efficient compared to other multi-stage detectors, making it easier to deploy on various
devices.

• Handling Small Objects: Math formulas can consist of small symbols or subscripts, which can be chal-
lenging to detect accurately. YOLOv8 is designed to handle objects of different sizes, including small
objects, by using anchor boxes of various scales and aspect ratios. This capability can help improve the
detection performance of small math formula components.

• High Localization Accuracy: YOLOv8 employs anchor-based detection, which helps improve the local-
ization accuracy of detected objects. Accurate localization is crucial for math formulas, enabling precise
extraction of symbols, subscripts, and superscripts.

• Flexibility and adaptability: YOLOv8 can be customized and fine-tuned for specific tasks and domains.
By training YOLOv8 on a custom dataset of math formulas, it can learn to detect formulas with higher
accuracy and adapt to specific formula detection requirements.

• Availability of pre-trained models: There are pre-trained versions of YOLOv8 available, trained on large-
scale datasets like COCO or ImageNet. These pre-trained models can be a starting point for math formula
detection tasks, allowing for transfer learning and faster convergence during training.

Once the formulas are extracted, we develop a reliable system for recognizing math symbols. We use faster
R-CNN object detection technology to achieve this. Additionally, we implement a convolutional graphic neural
network (ConvGNN) to analyze the layout of mathematical formulas accurately. This approach effectively
represents the formula as a graph with complicated relationships and interdependencies. ConvGNN eliminates
the need for time-consuming feature engineering and can accurately predict formula linkages.
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The remainder of the paper is organized as follows: Section 2 includes a review of related works. Section
3 describes the proposed systems for formula and symbol detection and classification and for formula layout
analysis using deep learning models. After that, experimental findings are discussed in section 4. Finally, in
section 5, some conclusions and prospects are given.

2 Related Works

Math recognition systems currently employ various methods for detection and recognition. According to [1],
there are three categories of formula detection methods: character-based, image-based, and layout-based. OCR
engines are used in character-based methods. Any characters not recognized by the engine are considered
potential math expression elements. Image-based methods use image segmentation, and layout-based detection
uses features such as line height, line spacing, and alignment from typesetting information, possibly along
with visual features. Similarly, various layout-based methods are employed to parse math formulas, including
syntax-based approaches, graph search approaches, and image-based RNNs, which generate LATEX strings as
output. Next, we will summarize the contributions and limitations of some existing math formula detection and
recognition systems.

In the paper cited as [2], the INFTY system was proposed that utilizes two recognition engines working in
tandem to achieve simultaneous character recognition and math-text separation. One engine is a non-specialized
OCR engine for math documents, while the other is a symbol recognition engine. After recognition, the sys-
tem performs structural analysis of the math expressions by identifying the minimum cost spanning trees in a
weighted digraph representation. The system achieves precise recognition results through a formula structure
recognition approach based on graph search.

The technique of utilizing symbol data from PDFs instead of relying on OCR to analyze images was initially
introduced by a research study conducted by [3]. They employed a pattern recognition approach to recog-
nize formulas from PDF files through expression grammar. The system has the advantage of being faster than
conventional rendering and analysis of document images and has better precision by utilizing PDF character
information. In a subsequent study [4], the authors successfully reconstructed fonts not originally embedded
in a PDF file. They accomplished this by mapping unicode values to standard character codes when applica-
ble. Additionally, they utilized connected components analysis to pinpoint characters with matching style and
spacing from a grouping provided by pdf2html. This enabled them to obtain precise bounding boxes.

Zhang et al. [5] adopt a dual extraction technique, drawing inspiration from [3], for PDF character extraction.
They rely on a PDF parser and an OCR engine to complement PDF symbol extraction. The approach involves
recursively segmenting and reconstructing the formula using symbols detected on the main baseline, enabling
an in-depth analysis of the formula structure. The recognition rate in INFTYReader [2] was improved by the
authors of [7]. They achieved this by utilizing the extracted PDF character information from PDFMiner. In
certain PDFs, certain characters are made up of multiple glyphs, like big braces or square roots that usually
have a radical symbol connected to a horizontal line. A study by [3] used overlapping bounding boxes to
identify these complex characters in current PDFs that use Type 1 fonts.

Deng et al. [8] introduced the concept of image-based detection with RNN-based recognition inspired by
RNN-based image captioning techniques. In a recent study by Phong et al. [14], they utilized a YOLO v3
network based on a Darknet-53 network with 53 convolutional layers for feature extraction and detection.
To improve recognition, they employed an advanced end-to-end neural network called Watch, Attend, and
Parse (WAP). The system utilizes a GRU with attention-based mechanisms in its parser, which can lead to
slow processing times due to pixel-wise computations. Diagnosing errors in recurrent image-based models
is difficult due to the absence of a direct correlation between input image regions and the resulting LATEX
output strings. The proposed system has been tested on the Marmot public dataset. The obtained accuracies
of detecting isolated and inline expressions are 93% and 73%, respectively. Meanwhile, accuracies of the
recognition for isolated and detected expressions are 51.77% and 45.50%, respectively.
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In [10], the authors presented algorithms that can detect and recognize mathematical expressions using a
unified system. They introduced an enhanced PDF symbol extractor, SymbolScraper, to accurately identify
symbol locations. Additionally, they developed a new Scanning Single Shot Detector, named ScanSSD, that
uses visual features to identify mathematical formulas. The ScanSSD was created by modifying the Single
Shot Detector (SSD) [11] to work efficiently with large document images. To recognize expression structure,
they utilized the Query-driven Global Graph Attention (QD-GGA) model [12]. This model uses CNN-based
features with attention to extract formula structure, similar to [2]. However, unlike [2], the QD-GGA model
trains the features and attention modules concurrently in a feed-forward pass for multiple tasks, including
symbol classification, edge classification, and segmentation. This results in faster training and execution for the
system.

A new system proposed by Phong (2022) [21] involves transforming binary document images into grey
images using the distance transform method. This process enhances the contrast between the expressions and
the background, improving the accuracy of expression detection. The transformed images are then inputted
into the Faster RCNN for formula detection. To further enhance accuracy, the anchor boxes of the RPN are
optimized for generation. The system also detects isolated expressions within the transformed images.

3 Proposed System

In this work, we proposed systems that differ from previous works. Here are some important distinctions:

• Our system focuses on formula detection, classification, and recognition and its evaluation.

• Grammar and manual segmentation are not required.

• Symbol and formula detection is based on the Faster RCNN and the YOLOv8 object detection deep
learning models, respectively.

• Formula layout analysis is based on convGNN, with outputs generated more quickly and easily diagnosed
errors than RNN models.

• Structure recognition errors can be directly observed in graphs grounded in input image regions.

3.1 Proposed System for Formula Detection and Classification

YOLOv8 is an improved version of the popular You Only Look Once (YOLO) object detection model. While
YOLOv8 refers to several different implementations and variations, the architecture generally follows the
YOLO design principles. Here’s an overview of the YOLOv8 architecture:

• Input and Preprocessing: The model takes an input image divided into a fixed grid of cells. The input
image is typically resized to a predetermined size suitable for processing.

• Backbone Network: It consists of multiple convolutional layers, residual blocks, and pooling operations.
The purpose of the backbone network is to extract high-level features from the input image.

• Neck: It is an intermediate component inserted between the backbone and the detection head. It usually
includes additional convolutional layers and feature fusion operations. The neck helps combine features
of different scales and enhances the model’s ability to detect objects of various sizes.

• Detection Head: It is responsible for generating the final predictions for object detection. It typically
consists of a series of convolutional layers, which progressively refine the feature representations.The
detection head predicts bounding box coordinates, objectness scores (to determine if an object is present),
and class probabilities for different object categories. YOLOv8 often employs anchor-based detection,
where anchor boxes of predefined sizes and aspect ratios facilitate localization and classification.
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• Output: It is a set of predicted bounding boxes, along with their associated class labels and confidence
scores. Non-maximum suppression (NMS) is commonly applied to remove duplicate or overlapping
detections, keeping only the most confident ones.

While YOLOv8 is primarily designed for general object detection tasks, including detecting various objects
in images, it can potentially be adapted for mathematical formula detection and classification as well. To use
it, we needed a custom dataset that included annotated images of mathematical formulas. The annotations
define the bounding boxes around the formulas to train the model. Each bounding box annotation contains the
coordinates and label of the formula. Here’s a general outline of the steps we followed to adapt YOLOv8 for
mathematical formula detection:

• Dataset Preparation: We used the IBEM: a dataset of images containing mathematical formulas annotated
with bounding box coordinates and labels. The labels represent the mathematical formula’s class, such
as an ”embedded” or an ”isolated” formula. It is important to note that creating a high-quality annotated
dataset for math formulas or expressions can be time-consuming and requires expertise.

• Model Selection: We used the annotated dataset to train the YOLOv8 model. YOLOv8 uses a deep
convolutional neural network architecture trained on the large-scale dataset ImageNet. However, in this
case, we needed to fine-tune the model on the used specialized formula dataset.

• Fine-tuning and Evaluation: We performed iterations of training and evaluation to improve the model’s
performance. We used appropriate evaluation metrics to assess the model’s accuracy and adjusted the
training parameters as needed. Training YOLOv8 for mathematical formula detection might require a
significant amount of labeled data and computational resources. Additionally, the accuracy of the model
depends on the quality and diversity of the training dataset.

• Testing and Inference: Once the model is trained, we used it to detect mathematical formulas in new
images. We provided the image as input to the trained YOLOv8 model and processed the output bounding
box predictions to extract the detected formulas. Note that the performance of the object detection model
depends on factors like image quality, variation in mathematical notations, and the complexity of the
formulas or expressions.

3.2 Proposed System for Math Formula Recognition

We propose splitting the off-line handwritten math formula recognition problem into two subsequent tasks. The
first challenge is recognizing math symbols in images and determining their bounding boxes. The second task
uses a graph-based technique to identify the formula’s structure.

3.2.1 Math Symbol Detection and Classification

As input, our system receives a scanned image of a formula and a model that ensures detection and classifi-
cation. Faster R-CNN, a pre-trained object detection model, was trained using the CROHME 2019 dataset to
build this model. The bounding boxes of classified symbols are then computed.

Deep Convolutional Neural Networks have improved the accuracy of current object-detecting systems dra-
matically. According to [20], among the different approaches, faster R-CNN, a supervised learning algorithm,
has provided state-of-the-art accuracy and efficiency, which justifies our pick of this model. After receiving an
image, the algorithm outputs a list of object-bounding box coordinates and the related object class for each box.
It begins by importing the Faster R-CNN Inception Resnet model to be trained, followed by the validation and
training data sets.

In Figure 2, we see that Faster R-CNN is best understood as a three-part neural network consisting of a
feature extractor, a Region Proposal Network (RPN), and a region classifier.
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Figure 2: Architecture of Faster R-CNN.

• Feature Extractor: It is often a Deep CNN (DCNN) with no fully connected layers. It takes an input
image and outputs a feature map. The feature extractor accepts images of varying widths and heights but
performs a preprocessing phase in which the images are scaled to the same minimum dimension (M).
The type of feature extractors used has a significant impact on the network’s accuracy and computational
cost. The larger the depth of the network, the longer the inference time and the higher the accuracy.

• Region Proposal Network: It is a two-layer, fully convolutional neural network. One is the box regression
layer, and the other is the classification layer. It begins by running the image through CNN to generate
a feature map. The algorithm then creates anchor boxes representing each object class with specific
height and width based on the objects in the training dataset. Anchor boxes are then tiled across the
image. Predictions for each anchor box are calculated using the previously generated convolutional
feature map. The regression layer computes four values describing a bounding box relative to the anchor.
The classification layer generates two values representing the probability of the bounding box containing
an object. It is a full CNN with two layers. The box regression layer is one, and the classification layer
is another. The image is first processed through CNN to build a feature map. Based on the object classes
in the training dataset, the algorithm then generates anchor boxes with specific heights and widths for
each object class. The image is then tiled with anchor boxes. The previously produced convolutional
feature map calculates predictions for each anchor box. The regression layer calculates four values that
describe a bounding box concerning the anchor. The classification layer makes two values representing
the probability of the bounding box containing an object.

• Region Classifier: The proposals of the RPN crop the respective regions from the features map. The
object’s class is then determined by a small neural network classifier, which then refines the box using
the cropped regions as input. This network, like the RPN, optimizes using a softmax and regression loss.

Using the faster R-CNN model that has already been trained, math symbols are identified and classified (see
Figure 3). The math formula layout analyzer then uses the vectorized class and placement information for each
symbol as its input.
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Figure 3: Math symbol detection and classification output example.

3.2.2 Math Formula Layout Analysis

As announced before math formula structure analysis is implemented based on ConvGNN. ConvGNN is a
popular example of Graph Neural Network (GNN), a neural network that operates on graph data structures.
ConvGNN are comparable to traditional CNN programs. Just as an image is a particular case of graphs in
which neighboring pixels are connected. In CNN, and similarly to a graph, each image pixel is considered a
node, with neighbors determined by the filter size. The CNN computes the weighted average of the red node’s
pixel values and those of its neighbors. A node’s neighbors are ordered and have a fixed size (see Figure 4).

Figure 4: On the left, we have image convolution in CNN, while on the right, we have graph convolution in
ConvGNN.

Like CNN, the ConvGNN calculates the weighted average of a node’s neighborhood information. For in-
stance, to obtain a hidden representation of the red node, the average value is computed by combining the node
features of the red node and its neighbors. Unlike image data, the neighbors of a node are not arranged in a
specific order and can vary in size (refer to Figure 4). Additionally, nodes can be connected by different links,
making it challenging to apply convolutions to graphs. In the following paragraphs, we provide a brief defini-
tion of ConvGNN, explain how information is propagated through its hidden layers, and clarify how ConvGNN
combines information from previous layers to create useful feature representations of nodes in graphs.

Remember that ConvGNNs are used for processing graphs and extending image convolution to graph data.
The idea is to create a node representation by combining its features with its neighbors, to extract high-level
node representations. To analyze a graph, either G = (V,E), where V is the set of vertices and E is the set of
edges, or G = (A,X), the input required is :

• An input feature matrix X of size N × F 0, where N is the number of nodes and F 0 is the number of
input features for each node.

• An adjacency matrix A of size N×N , which is a tool for implementing the graph structure representation.
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The hidden layer within the ConvGNN can be expressed as follows:

H i = f(H i−1, A) (1)

where H0 = X and f is a propagation rule :
Within this framework, multiple layers are denoted as H i, corresponding to an N ×F i feature matrix. Each

row in this matrix represents a feature representation of a node. Using the propagation rule f , these features
are aggregated at each layer to create the next layer’s features. As a result, the features become increasingly
abstract with each successive layer. The only variation between different ConvGNN variants is the propagation
rule f used. Initially, we utilized a basic propagation rule-based ConvGNN, and subsequently, we experimented
with the spectral rule. There are two types of ConvGCNs:

• Simple ConvGNN: One of the fundamental propagation rules involves the equation below that includes
the weight matrix for a given layer, denoted as W i, and a non-linear activation function, specifically
the ReLU function represented as σ. The weight matrix has dimensions of F i × F i−1, with the second
dimension determining the number of features in the upcoming layer.

f(H i, A) = σ(AH iW i) (2)

It’s important to remember that the straightforward propagation rule presents a node as a sum of its
neighbors’ feature representations. However, there are a couple of significant downsides to this ap-
proach. Firstly, the resulting representation of a node doesn’t consider its features. Secondly, nodes
with high degrees will have values that overshadow their feature representation, while nodes with low
degrees will have limited values. This imbalance can cause problems with exploding gradients and make
it challenging to train using algorithms like stochastic gradient descent, which require careful feature
scaling.

• Spectral-based ConvGNN: In this paper, we offer a theoretical explanation for a particular neural network
model based on graphs. Throughout the rest of the paper, we will use this model. Specifically, we analyze
a ConvGNN that operates with the following layer-wise propagation rule:

f(H i, A) = σ(D−0.5ÂD−0.5H iW ) (3)

where

– The degree matrix, denoted as D, is a diagonal matrix that holds information about the degree of
each node in a graph. The degree of a node is the number of edges connected to it. Together with
the adjacency matrix, the degree matrix is used to create the Laplacian matrix of the graph.

– The adjacency matrix Â includes self-connections (represented by the identity matrix, I) to consider
the features of the node itself rather than just its neighbors’ attributes. This improvement overcomes
the limitation of the basic ConvGNN.

– W : the weight matrix.

– σ : the ReLU activation function.

When comparing the spectral rule to simple rule propagation, the only difference lies in the choice of
the aggregate function. The computation of the aggregate feature representation of the ith node using the
simple rule is as follows:

aggregate(A,X)i = AiX =
N∑
j=1

Ai,jXj (4)



10 K. Khazri Ayeb et al. / Electronic Letters on Computer Vision and Image Analysis 23(2):1-28, 2024

The equation demonstrates that the contribution of every neighbor is determined by the neighborhood
described by the adjacency matrix A. When using the spectral rule, the feature representation is calculated
through the following formula:

agregate(A,X)i = D−0.5AiD
−0.5X =

N∑
j=1

D−0.5
i,i Ai,jD

−0.5
j,j Xj (5)

To explain this propagation rule, we can start with a localized spectral filter on graphs and use a first-order
approximation. Just like in the study conducted by [23], we initially utilized a Chebychev polynomial
approximation. However, we discovered that using Hermite polynomials yields better outcomes. We
define spectral convolutions on graphs as the product of a signal x ∈ RN (which has a scalar value for
each node) and a filter gθ = diag(θ) that is Fourier domain parameterized by θ ∈ RN . The matrix of
eigenvectors of the normalized graph Laplacian is represented by U:

gθ × x = UgθU
Tx (6)

L = IN −D−1/2AD−1/2 = U ∧ UT (7)

The function gθ depends on the eigenvalues of matrix L, denoted by ∧, and the graph Fourier transform
of x, represented by UTx. To evaluate this equation, one must multiply with the eigenvector matrix U , a
computationally expensive process with time complexity of O(N2). Additionally, computing the eigen-
decomposition of L can be challenging for large graphs. To overcome this issue, Chebyshev polynomials
are defined recursively.

Tk(x) = 2xTk−1(x)− Tk−2(x) (8)

with T0(x) = 1 and T1(x) = 2x. The Hermite polynomials are recursively defined as:

Tk(x) = xTk−1(x)− (k − 1)Tk−2(x) (9)

with T0(x) = 1 and T1(x) = x.

In what follows, we will go over ConvGNN’s design, along with how it applies to problems involving math
formula recognition. The formula is expressed as a graph, as seen in Figure 5, with nodes denoting symbol
classes and links denoting their spatial relationship. We added link nodes to ensure link prediction. We then
created graph G, a single undirected, unweighted network containing all of the math formulas in the Crohme
dataset, with nodes nodes as symbols and their links.

As a part of our efforts to train our math formula analysis system, we have utilized the CROHME data
set. This data set contains graph files that provide information about the symbols and their relationships in
mathematical formulas. Before analyzing the data, we performed a preprocessing step where we grouped
the strokes of the same symbol and removed any unnecessary spatial relationships, especially between distant
symbols. You can refer to Figure 6 for a better understanding.

ConvGNN is a method used to create a node’s representation by combining its features and those of its
neighbors. This allows for the extraction of high-level node representations. In Figure 7, a single graph
represents all the formulas in the data set. In this graph, nodes represent symbols and links. Our system takes
a Graph G = (A,X) as input where X is a feature matrix of size N × F 0 (with N being the total number of
nodes and F 0 being the number of input features for each node), and A is an adjacency matrix of size N ×N .
The model propagates information through hidden layers, accumulates information from previous layers, and
provides graph node feature representations.

The ConvGNN output is a labeled graph where symbols are classified into lexical units, and their relation-
ships are identified.
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Figure 5: Graph representation of a mathematical formula.

Figure 6: Preprocessing for math formula layout analysis.

4 Experimentation and Obtained Results

4.1 Results from the YOLOv8 for Formula Detection and Classification

We used the IBEM dataset [13], which comprises 600 documents totaling 8,272 pages. It comprises 29603
isolated and 137089 embedded expressions. Table 1 summarizes the characteristics of the IBEM data set.

Table 1: statistics of the IBEM data set.
Total no. of documents 600
Total no. of pages 8272
No. of isolated MEs 29603
No. of embedded MEs 137089

Regarding class distribution, it is evident that the IBEM data set is imbalanced, and embedded expressions
are more frequent than isolated ones. This data set is divided into three sets, as specified by the ICDAR
2021 Competition on Mathematical Formula Detection [22]. We worked with the second set, including 670-
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Figure 7: Architecture of ConvGNN, for mathematical formula layout analysis.
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page images for training and 380-page images for validation. The data set includes image files of scanned math
pages and their corresponding text files. Each text file contains information regarding mathematical expressions
found in the document. This information consists of the x and y coordinates of the expression’s centroid, width,
height, and class (embedded or isolated).

YOLOv8 is typically trained in a two-step process: pretraining on a large-scale dataset (e.g., ImageNet) and
fine-tuning on a specific detection dataset. During training, the model optimizes the loss function incorporating
both localization and classification losses. The loss function penalizes incorrect predictions and encourages
accurate bounding box localization and correct class predictions.

4.1.1 YOLOv8 fine-tuning

Based on our experiments, we have determined the optimal hyperparameters to be utilized in the YOLOv8
model.

• Input shape: 1447× 2048.

• In our training program, we utilized a batch size of 8 and set the number of training epochs to 1000 with
a learning rate of 0.01 and a momentum of 0.9. We also implemented early stopping with a window size
of 50, which means training stopped if the validation loss did not decrease for 50 consecutive epochs.

• The used optimizer is SGD (Stochastic Gradient Descent).

The performance of the YOLOv8 model on the training and validation sets is illustrated in Figure 8, which
showcases three distinct loss metrics: box loss, target loss, and classification loss. Box loss assesses the model’s
ability to accurately identify the center of an object and predict its bounding box. Target loss evaluates the
probability of locating an object within a suggested region of interest. Classification loss reflects the model’s
proficiency in correctly classifying objects. The model demonstrated notable improvements in precision, recall,
and average accuracy throughout the training process. The decreasing values of box loss, target loss, and
classification loss evidence this. The model exhibited significant enhancements in precision, recall, and mean
Average Precision (mAP) after 200 epochs, ultimately reaching a stable state after 400 epochs and stopped
early at 801. Based on the above mentioned metrics, the best results were observed at epoch 751 and are briefly
presented in Table 2.

Table 2: Training results for mathematical formula detection
Box loss Cls loss Tar loss Pre Rec mAP50 mAP95

train 0.86748 0.56159 0.89632 2*0.89867 2*0.86504 2*0.90957 2*0.70882
val 0.79908 0.49438 0.86164

During the training process, the model was validated using a dataset of 380 validation images. The results
are presented in Table 3.

Table 3: Results of the validation of YOLOv8 model on the validation data set
Class Images Instances Precision Recall mAP50 mAP50-95
all 380 7941 0.896 0.867 0.91 0.709
emb 380 6595 0.825 0.755 0.83 0.552
iso 380 1346 0.967 0.98 0.989 0.865
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Figure 8: The training and validation curves of box loss, objectness loss, classification loss, precision, recall,
and mean average precision (mAP).

4.1.2 YOLOv8 Testing

After training the model, it was applied to analyze unseen document images. We employed the mean average
precision (mAP) metric to assess the model’s performance, commonly used in object detection tasks. The mAP
is calculated by determining each class’s Average Precision (AP) and then averaging it across multiple classes
(as shown in Equation 10). Precision (AP) represents the proportion of correctly identified objects (true positive
detections) among all positive detections (both correct and incorrect).

mAP =
1

C

C∑
c=1

AP c; (10)

where: C : represents the total number of classes and APc : represents the average precision for class c.
The mean average precision (mAP) is a comprehensive metric that provides an accurate assessment of the

overall performance of a model. It is commonly employed in computer vision competitions and research to
evaluate and compare the performance of various object detection models.

The precision refers to the level of accuracy exhibited by a model in correctly recognizing just pertinent
objects. The metric under consideration is the proportion of true positives (TPs) in relation to the total number
of detections produced by the model. (See Equation 11)

Precision =
TP

TP + FP
=

TP

alldetections
(11)

Recall is a metric that quantifies the model’s capacity to accurately identify all instances of true positive pre-
dictions in relation to the total number of ground truths. (See Equation 12)

Recall =
TP

TP + FN
=

TP

allgroundtruths
(12)

A model is considered to be of high quality if it exhibits both high precision and strong recall. An ideal model
exhibits no false negatives and no false positives, resulting in a precision score of 1 and a recall score of 1.
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The recall and precision curves for each confidence threshold can be seen in Figures 9 and 10, respectively.
The curves illustrate that choosing a high confidence threshold leads to a decrease in recall and an increase in
precision. The result suggests that there are only a limited number of accurate detections, but they are very
precise. On the other hand, if a less strict threshold is used, there will be numerous detections, but with many
false positives. All mathematical formulas will be identified, but many incorrect ones will also be detected.
Remember that recall and precision scores fall between 0.0 and 1.0, with a higher score indicating better
performance. After analyzing the curves, we maintained a confidence level of 0.1 for making predictions. We
have summarized the results obtained from this evaluation in Table 4.

Figure 9: The recall score for our custom YOLOv8 object detection model.

Table 4: Results of the validation of YOLOv8 model on the test data set
Class Images Instances Precision Recall mAP50 mAP50-95
all 380 7849 0.888 0.857 0.905 0.701
emb 380 6435 0.833 0.744 0.83 0.547
iso 380 1414 0.943 0.97 0.979 0.855

We also employed the confusion matrix as an evaluation metric, which is a useful tool for assessing the
performance of a Machine/Deep Learning model’s performance by examining its predictions’ accuracy in re-
lation to the ground truth. In the confusion matrix, each row corresponds to an actual class, while each column
corresponds to a predicted class. The Figure 11 displays the confusion matrix presenting the results of our
model’s application on the test dataset. As observed, the model successfully detected the embedded formulas
with an accuracy rate of 77% but failed to detect 23% of them. In the case of isolated formulas, our system
achieved a detection rate of 98%. Our analysis revealed a complete absence of confusion between the two
classes. It should be noted that the background class is inherently incorporated by default, thanks to a feature
of YOLOv8’s operational methodology. Specifically, YOLOv8 classifies any zone lacking an object as a back-
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Figure 10: The precision score for our custom YOLOv8 object detection model.

Figure 11: Confusion matrix.
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ground. For this research, we focused exclusively on the two specified classes to evaluate the performance of
our system.

The developed model was used to analyze document images that had not been seen before. The image in
Figure 12 provides an example of the model’s prediction capabilities, showing that it can accurately identify and
classify various objects in document images. The prediction probabilities for these objects consistently exceed
90%, especially for isolated formulas. However, recognizing embedded formulas is more challenging due to
the possibility of confusion between certain parts of the formula and the surrounding text. Table 5 illustrates the
experimental findings, whereby the performance of our model is compared with that of other relevant studies,
utilizing mAP50 metric.

4.2 Results from Faster RCNN for Symbol Detection and Classification and ConvGNN for
Formula Layout Analysis

To develop our handwritten math expression recognition models, we rely on the widely used CROHME dataset
[6]. This dataset comprises math expressions handwritten on online devices, with stroke trajectory described
by (x, y) coordinates in InkML files. We use the images generated from these files for training, validation, and
testing. The CROHME training set contains 8836 expressions, while the test set varies concerning the year
they were released. We evaluate our system based on the CROHME 2014, CROHME 2016, and CROHME
2019 test sets, which consist of 986, 1147, and 1199 expressions, respectively. The CROHME dataset has 101
symbol classes and 6 structural relation classes (Right, Above, Below, Superscript, Subscript and Inside). This
large number of symbol classes poses several challenges, including digits, characters, and operators such as +,
×, √. Some of the challenging categories include small symbols like points and commas, and symbols that
have similar shapes such as 1, \, ×, x, c, and C. For a visual representation of the dataset, see Figure 13.

We utilized the CROHME dataset [6] to execute our formula analysis model. The mathematical formulas in
the dataset are labeled at the symbol level, where each symbol node is assigned a specific label from a set of 20
labels to identify it accurately. For more information about the labels used, please refer to Table 6.

To conduct our experiments, we divided the math formula dataset into three sets: training, validation, and
testing. This dataset contained 180 formulas, of which approximately 50% (90 formulas, generating 1737 train
nodes) were used for training, 20% (36 formulas, generating 669 validation nodes) for validation, and 30%
(54 formulas, generating 1096 test nodes) for testing. Our decision to use only 50% of the dataset for training
and a larger set for testing was intentional, as we wanted to test the system’s ability to generalize even with
a limited training set. Our evaluation of the math formula recognition system relied on the accuracy metric,
which measures the percentage of correctly predicted sequences.

After conducting experiments, we have established the following hyperparameters to be used in the proposed
model:

• When resizing images, we maintain their aspect ratio while ensuring that their dimensions fall within a
range of 640 pixels (with a maximum and minimum limit).

• We trained Faster R-CNN, Inception, and ResNet models, which are pre-trained models on the MSCOCO
dataset. Despite the stark contrast between our generated images and the natural images in the dataset,
we discovered that using pre-trained models significantly expedites the convergence process compared
to training from scratch.

• We used 300 proposals per image.

• In our training program, we utilized a batch size of 2 and set the number of training steps to 900,000 for
math symbol detection. The model was allowed to learn for 126,000 steps.

We defined the setup options and training configurations for our formula layout analyzing model as follows:

• A 5-layer ConvGNN network was proposed.
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Figure 12: An example of formula detection by YOLOv8.
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Table 5: Comparing our work with others in the field.
Works Models Databases Performances
[15] Object detection:

EfficientDet-Lite0
formula calculation:
Reverse Polish Nota-
tion algorithm with
operator precedence
rules

200 formula images
for training the object
detection model. 20
for testing formulas.
Recognition 16 sym-
bols. classes

Object detection:
mAP 63.17% for-
mula Recognition:
accuracy 81.9%

[16] CNN model: HMS-
VGGNet for offline
symbol recognition

Crohme 2014 ad 2016
(101 symbols), HASY
v2 ( 369 symbols)

92.42% accuracy
tested on Crohme
2016 and 85.05%
tested on HASY v2

[17] Feed forward back
propagation neural
network, SVM, KNN
for printed and hand-
written symbol and
formula recognition

Personal database Accuracy of 88.5%
with SVM and of
78.4% with KNN

[18] Symbol recognition:
RCN, layout analysis:
combine segmentation
and position info.
to build the Latex
sequence

MNIST, Kaggle, per-
sonal dataset of 200
formulas

Symbol recogni-
tion: 49%, math
formula recogni-
tion: 70%

[19] Symbol localisation
(YOLO v5 object
detector) build a graph
on math symbols
graph reasoning net-
work to generate SLT

Crohme 2014,
2016, and 2019,
OffRaSHME

47.67% for symbol
detection, 56.95%
for formula recog-
nition

[14] YOLOv3, WAP Marmot YOLOv3: 93%
(isolated), 73%
(inline), WAP:
51.77% (isolated),
45.50% (inline)

[21] Faster RCNN Marmot and GTDB
(part of IBEM)

85.15% (inline),
91.04% (isolated)

Ours YOLOv8 for formula
detection, Faster R-
CNN for symbol de-
tection and classifica-
tion, and ConvGNN
for layout analysis

Crohme 2019 98% (isolated for-
mula detection),
77% (embedded
formula detec-
tion), 87.3%
(symbol detec-
tion), 92% (layout
analysis)
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Figure 13: Here are some sample images from the CROHME dataset.

Table 6: Used labels.
Label Signification
letter Letters from a (resp. A) to z (resp. Z)
OP Operator (+, -, ¡, ¿, /, etc.)
DL Delimiter ((, ), , , etc.)
Integer digits from 0 to 9
HFB Horizontal Fraction Bar
IS Integral Sign
MS Math Symbol ( △, ∞, ∅, etc.)
RS Root Symbol
Pun Punctuation sign (,, ..., etc.)
SPS Summation Product Symbol
NF Name of Function (f(x), g(x), etc.)
MF Math Function (cos, sin, etc.)
LS Limit Sign
Det Determinent
R Right
A Above
B Below
I Inside
Sub Subscript
Sup Superscript

• Hermite filters of order 2 (k = 2) were used, and we initialized each hidden layer with 18 units.

• The ConvGNN layer had an L2 regularization factor of 5.10−4 and a dropout of 0.005.

• The model was trained as a single big graph batch for a maximum of 1000 epochs with a learning rate of
0.001. We also implemented early stopping with a window size of 50, which means training stopped if
the validation loss did not decrease for 50 consecutive epochs.

We assessed the suggested system based on its ability to detect symbols and recognize mathematical expres-
sions.
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4.2.1 Symbol Detection

After 126,000 steps, the mean average precision at a 50% IoU threshold is 87.3%. Check Table 7 for a list of
the top and bottom ten classes regarding average precision.

Table 7: Highest and lowest performing symbols based on average precision.
best performing symbols AP worst performing symbols AP
\forall 1.000 \exists 0.000
\Delta 1.000 \mu 0.000
= 0.998 o 0.000
\sum 0.987 P 0.175
− 0.973 S 0.200
8 0.970 v 0.273
\ldots 0.964 X 0.312
+ 0.962 s 0.316
3 0.959 \} 0.333
\infty 0.959 I 0.333

In the two figures, labeled 14 and 15, we can find information regarding the mean average precision and the
average recall of three different class sizes. Symbols smaller than 322 are classified as small, those between 322

and 962 as medium, and the rest as large. The figures indicate that the size of symbols has a significant impact
on the accuracy of the detector. Larger symbols lead to more precise predictions. Additionally, figures labeled
16, 17, and 18 provide further examples of the detection model’s output. The first example shows a detection
with no errors, while the second one depicts a typical confusion case between opening and closing parentheses.
Finally, the last figure shows that the part in of the symbol \sin was erroneously detected as separate from the
\sin symbol.

Figure 14: Calculating the Mean Average Precision (mAP) for each symbol size.

In the graph in Figure 19, we can observe the training and validation losses throughout the update steps. One
notable observation is that the training and validation losses are similar, with validation loss slightly higher.
Furthermore, the model’s performance improves over time by noticing a decline in training and validation loss,
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Figure 15: Calculating the average recall (AR) for each symbol size.

Figure 16: Detecting math symbols accurately and error-free.

followed by a stable curve, indicating a good fit. Additionally, Figure 20 demonstrates the breakdown of the
validation loss into classification and localization loss, and the outcome is satisfactory.

Table 7 shows that certain symbols in mathematical formulas have unique structures, resulting in high pre-
cision during detection. However, some symbols are often mistaken for others, leading to lower accuracy and
recall rates for the model. For instance, Table 8 highlights examples of symbols that may be missed or con-
fused with other symbols during detection. The detection of symbols with small widths or heights, such as
the dot, hyphen, and number 1, poses a significant challenge for the models and may lead to missed symbols.
Additionally, the models frequently misclassify symbols that have similar shapes, like 0 and \theta or 9 and g,
which is a common detection error. Moreover, the models may misclassify symbols with the same or similar
shape but are symmetric, such as ( and ) or 7 and F . It is worth noting that illegible handwriting can also lead
to erroneous classification, as shown in Figure 21. This type of error can be challenging even for humans to
detect.
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Figure 17: One common error in detection is the confusion between opening and closing parentheses.

Figure 18: Separately detecting the \sin symbol and its composite in inside.

Table 8: Example of confused or missed symbols.
Ground truth Prediction Ground truth Prediction
0 \theta q 9
d 1 . miss
G v ( )
b d - miss
7 F 1 miss
9 g ) (
2 c 3 s
W N ¿ ¡
≥ ≤ d b
C ( ≤ ≥

4.2.2 Formula Layout Analysis

We have conducted tests on four distinct models: the Multi-layer Perceptron (MLP) model, the basic Con-
vGNN model, and the spectral models that use Tchebychev (ConvGNN-Hermite) and Hermite (ConvGNN-
Chebychev) polynomial approximation filters. The summary of our comparative evaluation experiments is
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Figure 19: The losses for training and validation.

Figure 20: Validation losses for classification and localization.

presented in Table 5.

Table 9: Results from simple and spectral ConvGNNs.
Proposed Models Train Accuracy Runtime Cost
Simple convGNN 0.28 0.03124 2.17124
ConvGNN-hermite 0.92 0.02992 0.31295
ConvGNN-chebychev 0.82 0.02992 0.68176

Our study evaluated the accuracy, run time, and cost of our methods on test nodes. The reported numbers
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Figure 21: The handwriting was difficult to read, resulting in incorrect classification. Specifically, the number
3 was mistaken for an s, the letter G was mistaken for a v, and the number 2 was mistaken for a c.

indicate the performance of spectral ConvGNN, which uses the Hermite approximation filter and a limited num-
ber of nodes from the CROHME dataset. Our results demonstrate that this method performs exceptionally well.
Despite this, it requires more training time than other methods, like MLP, due to its complexity and numerous
parameters to learn in each training epoch. Furthermore, Spectral ConGNN can achieve superior performance
with fewer training epochs. Displayed in Figure 22 are the accuracies for both training and validation, while
Figure 23 depicts the loss for each epoch during training and validation.

Figure 22: Training Validation Accuracy: (a) ConvGNN-Hermite (c) ConvGNN-cheby, (d) Simple ConvGNN.
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Figure 23: Training Validation Loss: (a) ConvGNN-Hermite, (c) ConvGNN-Cheby (d) Simple ConvGNN.

Our system can get good results in a few training epochs, one hundred training epochs, and even less stable
compared to the MLP model, which needs more than 600 epochs to be stable. Besides, we can see that training,
and validation accuracy/loss of Spectral-based ConvGNN models, especially the model using Hermite Filter,
rise or descend very quickly and stably. Here is a summary of the research on recognizing mathematical
symbols and formulas. The results are promising and comparable to the work done by [19], which used a graph
neural network and achieved an accuracy of 92% on the same database.

5 Conclusion and Future Work

We have developed a solution using deep learning techniques to extract and recognize mathematical formulas.
By employing the YOLOv8 deep learning object detection model and adapting it to math formula detection,
we have been able to identify and localize math formulas within images automatically. Once formulas were
extracted, we used the Faster-RCNN architecture to localize and classify symbols in the image of the formulas.
We found that this model works well with offline data as well. To parse the formulas, we employed a spectral-
based ConvGNN to predict the relationship between the symbols, which allows us to model the input formula
image as a symbol graph. This approach is more interpretable than sequence representation. Our tests on
several math formulas collected from CROHME datasets demonstrate that the ConvGNN model is effective
in categorizing math symbols and identifying spatial relations. This model opens up possibilities for further
research and development in graph representation learning, and we plan to test with various GNN architectures
such as Graph Auto-Encoder Networks, Recurrent GNNs, and Gated Graph Neural Networks.
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