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Abstract

Hyperspectral remote sensing has emerged as a powerful tool for vegetation classification due to its
ability to capture detailed spectral information. This study introduces a novel methodology for vegetation
classification using exclusively hyperspectral imagery. The proposed approach comprises atmospheric cor-
rection using the FLAASH algorithm, followed by dimensionality reduction using PCA and segmentation
through the ROI selection and the Spectral Angle Mapper (SAM) module. Subsequently, a deep autoencoder
is employed for feature extraction, paving the way for classification using the Multi-Layer Perceptron (MLP)
algorithm. The effectiveness of this methodology is evaluated using a hyperspectral image of the Saint Clair
River, successfully classifying the image into six main classes: water 1, water 2, grass, tree, reed, corn, and
an "unclassified’” category encompassing concrete, roads, bricks, wood, and more. Our findings demonstrate
the efficacy of this approach in accurately classifying and mapping vegetation in river ecosystems, offering
a promising solution in the face of limited hyperspectral datasets.

Key Words: hyperspectral imaging, mineral identification, Optimized 3D-2D CNN, dimensionality reduc-
tion, feature extraction.

1 Introduction

Hyperspectral remote sensing has become an indispensable tool for environmental monitoring and mapping
due to its ability to capture information about the spectral reflectance of materials in a given scene [[1]]. Despite
these advantages, accurate classification of hyperspectral data remains difficult, primarily due to the absence
of dedicated hyperspectral datasets [2[]. Consequently, this gap leads us to rely on unprocessed hyperspectral
images captured by satellite or airborne sensors such as AVIRIS or Hyperion EO-1 as data sources [3]].

Such imagery introduces several challenges, including notable issues such as noise and other complications
related to atmospheric absorption effects. In response to these challenges, there is a strong need to develop and
implement advanced classification methods designed to effectively utilize hyperspectral images by employing
robust noise reduction and artifact mitigation strategies [4].

The St. Clair River, North America’s lifeline, lies at the crossroads of commerce, recreation, and ecological
vitality. It serves as a lifeline for commercial shipping and a sanctuary for recreational activities such as fishing
and boating. Moreover, the river’s unique ecological tapestry is home to remarkable flora and fauna, giving
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it a central role in ecological exploration. In this dynamic landscape, precision environmental monitoring is
becoming increasingly urgent [5].

In recent years, deep learning-based approaches have emerged as a powerful tool for hyperspectral image clas-
sification due to their ability to extract complex features and patterns from high-dimensional data [6].

Among these approaches, deep autoencoder-based methods have attracted considerable attention for vegeta-
tion mapping and classification in different ecosystems [7]]. These studies have demonstrated the efficacy of
deep learning-based methods in vegetation mapping and classification, highlighting their potential for detect-
ing subtle differences in vegetation types. Furthermore, by leveraging the hierarchical representation learning
capabilities of deep autoencoders, these approaches have effectively captured the underlying spatial and spec-
tral characteristics, enhancing classification accuracy and providing valuable insights into ecosystem dynamics
(8.

This study uses a feature extraction approach based on a deep autoencoder to classify hyperspectral images of
a river landscape area using an MLP classifier. We selected six classes: water 1, water 2, grass, tree, reed, corn,
and unclassified. Classification performance was evaluated by applying several machine learning classifiers,
including Logistic regression [9], Random forest [[10], K-nearest Neighbors [[11]], Gradient boosting [[12]], Sup-
port Vector Machine [|13]], and Multilayer Perceptron (MLP) [14].

Our proposed approach for hyperspectral image mapping and classification builds on previous research that has
utilized deep learning and auto-encoder-based approaches. For instance, Xiaorui Ma et al. (2016) demonstrated
the effectiveness of their improved deep network, the Spatial Updated Deep Auto-Encoder (SDAE), in handling
small training sets and incorporating spatial information into the learning network [7]]. Furthermore, Zhouhan
Lin et al. (2013) proposed an approach for hyperspectral image classification by integrating deep learning and
autoencoders to extract spectro-spatial features, which demonstrated superior classification accuracy compared
to traditional methods [|15]]. Finally, Wenzhi Zhao et al. (2016) proposed a spectral-spatial feature-based clas-
sification (SSFC) framework that utilizes dimension reduction and deep learning techniques for spectral and
spatial feature extraction. Their experimental results on well-known hyperspectral datasets show that the pro-
posed SSFC method outperforms other commonly used methods for hyperspectral image classification [6].
Nevertheless, it is imperative to conduct further research to conduct a rigorous evaluation of the performance
of these approaches on larger datasets and under diverse conditions. For example, Jaime Zabalza (2016) pro-
posed segmented stacked autoencoders (S-SAE) for hyperspectral feature extraction and classification. S-SAE
divides the original features into smaller data segments that are processed by smaller SAEs, resulting in im-
proved efficacy of data abstraction and classification accuracy [16]. The primary contributions of this study are
outlined as follows:

* Atmospheric Correction: We utilized the FLAASH module to correct hyperspectral data for distortions
introduced by atmospheric conditions.

* Dimensionality Reduction: We implemented Principal Component Analysis (PCA) to reduce the dimen-
sionality of the hyperspectral data by extracting the most significant components.

» Segmentation: The Spectral Angle Mapper (SAM) module was utilized to segment the hyperspectral
image into distinct regions.

* Feature Extraction: We proposed a novel deep autoencoder model specifically designed to extract mean-
ingful features from the segmented hyperspectral data.

* Classification: We classified the extracted features into predefined vegetation categories using the Multi-
layer Perceptron (MLP) technique.

The rest of this study is organized into Section II, which provides a detailed description of the study area along
with specific hyperspectral image information. Section III outlines the proposed method, including the algo-
rithms and modules applied. In Section IV, we offer a concise overview of the autoencoder models employed in
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this study, delving into their specific applicability to hyperspectral image classification. Section V presents the
experimental results obtained through the proposed approach, offering a detailed analysis of the classification
results. Finally, Section VI summarizes the main observations and conclusions drawn from our research.

2 Study area and materials

2.1 Study area

The study area for this research is the St. Clair River, which is a significant waterway located in North America
with geolocation coordinates between latitude 42° 49’ 15.114” N and longitude 82° 29’ 9.6864” W. It serves as
the primary connection between Lake Huron and Lake St. Clair, separating the Canadian province of Ontario
from the U.S. state of Michigan. The river stretches for approximately 64 kilometers (40 miles) and has an
average depth of 8 meters (26 feet). It is a critical transportation route for commercial ships and is used for
recreational purposes such as fishing and boating. In addition, the river’s unique ecosystem supports a diverse
range of plant and animal life, making it an important area for ecological research (Figure [I). The St. Clair
River serves as a vital transportation corridor and a haven for diverse plant and animal life. As human activities
continue to shape the landscape, it is imperative to adopt sustainable land use practices that safeguard the
ecological integrity of this precious ecosystem. Figure 2] shows the distribution of different types of land use in
the St. Clair River region. Agricultural land is the most widespread, occupying around 40% of the total area.
Urban areas occupy around 30% of the total area, while forests, grasslands, and wetlands each occupy around
10% of the total area.
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Figure 1: Study Area and Overview of the St. Clair River.
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Figure 2: Land use distribution in the St. Clair River.

2.2 AVIRIS data

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor aboard a NASA ER-2 aircraft captured
the hyperspectral image used in this study. The hyperspectral image is 703 x 738 pixels and contains 224
spectral bands ranging from 0.37 um to 2.5 um. This study’s region of interest (ROI) has a size of 280 x 280
pixels. The spatial resolution of the image is 17 meters, with a bandwidth of 10 nanometers. There are 79
bands in the visible and near-infrared range (VNIR) and 145 bands in the shortwave infrared range (SWIR).
The AVIRIS sensor has been widely used for hyperspectral remote sensing due to its high spectral resolution
and accuracy, making it an excellent tool for analyzing the spectral characteristics of the St. Clair River region.

3 Proposed work

Our research focuses on enhancing the classification accuracy of hyperspectral images from the St. Clair River
region using a deep autoencoder-based feature extraction approach. Figure [3]illustrates the workflow of our
system, which first includes the pre-processing steps, including :

* BBR and Radiometric Calibration: This process removes noise-affected bands and converts the image
to radiance. It corrects for sensor-related errors, ensuring the quality and consistency of the data.

* Atmospheric Correction: This step compensates for atmospheric effects that can alter the spectral
characteristics of the images, ensuring accurate reflectance values.

* Dimensionality Reduction: Techniques are applied to reduce the data dimensionality, making it more
manageable and improving computational efficiency.

Next, the data is processed using a DAE (Deep Autoencoder) architecture that learns a compact and efficient
representation of the data in a latent space, capturing the essential features required for accurate classifica-
tion. Subsequently, the regions of interest selection focus on identifying crucial areas for analysis, while image
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segmentation generates the ground truth used as reference data to validate and train the classification model,
guaranteeing its accuracy and reliability. The final stage involves classification using machine learning algo-
rithms, followed by performance measurements to assess the model efficiency.
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Figure 3: The flowchart of our system.

3.1 Data preprocessing
3.1.1 Bad bands removal (BBR)

Data pre-processing is a crucial step in the analysis of hyperspectral images. One of the main tasks in this stage
is to remove bad bands. Our technique is called Bad Band Removal (BBR) [[17]]. It selects bands with high noise
levels or other artifacts. These problematic bands are then excluded from further analysis to prevent them from
affecting the quality of feature extraction and classification processes. Table [T] summarizes the specific bands

Removed Bands | Wavelength (um)
1to4 0.37-0.40
106 to 116 1.34 - 1.44
152 to 172 1.80 — 1.98
220 to 224 2.46 -2.50

Table 1: Summary of removed bad bands.

removed during our pre-processing step. The suppressed bands listed in the table cover different wavelength
ranges:

* Bands 1 to 4 (0.37 - 0.40 um): These initial bands generally suffer from high noise levels due to sensor
limitations and atmospheric scattering effects, which can distort spectral data.

* Bands 106 to 116 (1.34 - 1.44 pm): This range includes wavelengths that can suffer from water vapor ab-
sorption, resulting in high noise and loss of information. Suppressing these bands minimizes inaccuracies
in the data.

* Bands 152 to 172 (1.80 - 1.98 um): In this range, data are sensitive to noise introduced by atmospheric
gases and other environmental factors, which can obscure the spectral signals of the materials observed.

* Bands 220 to 224 (2.46 - 2.50 pm): At these longer wavelengths, thermal noise, and other sensor-related
problems can become pronounced, making these bands unreliable for accurate spectral analysis [18§]].
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Figure 4: Bad bands in our hyperspectral imaging: visual examples.

Figure [ provides visual examples of bands affected by noise, such as band 03 (0.38 pm), band 111 (1.39 pym),
band 169 (1.95 um) and band 222 (2.48 um). These bands are problematic due to the visible noise that can
interfere with subsequent data processing and analysis.

3.1.2 Radiometric calibration

The high number of closely spaced and adjacent spectral bands can cause radiometric inaccuracies in hyper-
spectral data. Therefore, image rectification requires data pre-processing and atmospheric correction [19]. The
original, unprocessed image data from the AVIRIS sensor needs correction in radiometry, geometry, and at-
mospheric conditions. After removing the bad bands, radiometric calibration is essential to convert the raw
data into a physical radiance unit. Atmospheric correction is necessary to eliminate atmospheric effects and
transform the radiance values into surface reflectance [20]. In this study, we performed radiometric calibration
using the following equation:

Ly = gain - pizel_value + of fset (1

L) Represents the scene’s radiance value at the specific wavelength () being measured. The gain factor
accounts for the signal amplification during the analog-to-digital conversion (ADC) process. It represents the
sensor’s sensitivity and how much the raw pixel value is multiplied to obtain the radiance value. Pixel Value is
the raw digital value for a specific pixel in the image. It represents the electrical signal generated by the sensor’s
detector at that location, and the offset factor compensates for any systematic bias in the sensor’s response.

3.1.3 Atmospheric correction

The remote sensing sensor measures solar radiation through the atmosphere to obtain the energy reflected
by the earth’s surface. Atmospheric correction, including coefficients such as altitude, albedo, aerosols, and
water vapor, is essential to obtain accurate ground reflectance. In the case of AVIRIS, the correction includes
a pixel-by-pixel estimate of water vapor [19]. After radiometric calibration, we applied the FLAASH (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes) module, a crucial step in our method of tackling
atmospheric interference in hyperspectral imaging. It is designed to correct for atmospheric effects, which
can distort the spectral signatures of surface features[21]]. By considering these effects, FLAASH improves
the accuracy and reliability of subsequent analyses [19]. The following equation can describe the FLAASH

correction:
Ap Bp

- 1—peS+1—peS
The term (p) signifies the surface reflectance of a pixel, representing how much light is reflected by the surface.
Meanwhile, (pe) represents the radiance observed at the sensor, considering the effect of atmospheric spherical
albedo. The factor (La) denotes the radiance scattered by the atmosphere in the reverse direction. Notably,
the coefficients A and B, contingent upon various atmospheric and geometric conditions, play a pivotal role in

L + La ()
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these equations [22f]. By understanding and manipulating these elements, we navigate the complex interplay
of radiance and atmospheric effects, refining our hyperspectral imagery to represent the underlying surface
properties accurately. In our hyperspectral imaging pre-processing, the FLAASH atmospheric correction mod-
ule assumes essential functions, skilfully compensating for atmospheric scattering and absorption effects [23]].
Figure [5] clearly illustrates the significant impact of atmospheric correction on spectral signatures. This figure
is divided into two parts, the left showing the area before and after the FLAASH correction, which eliminates
atmospheric interference. On the right, the green line represents the original uncorrected spectral data, where
fluctuations are visible, indicating the presence of atmospheric interference. In contrast, the red line shows
the data after FLAASH correction, revealing distinct and precise spectral characteristics. This transformation
highlights the importance of atmospheric correction in obtaining reliable and accurate spectral data. Without
this correction, subsequent analyses, such as material or terrain classification, would be biased by atmospheric
distortions. Thus, atmospheric correction ensures the accuracy and relevance of the conclusions drawn from
spectral data, thereby strengthening the validity of subsequent analyses.
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Figure 5: Image and spectra before and after atmospheric correction (FLAASH).

3.1.4 Dimensionnality reduction

In the context of hyperspectral image classification for the Saint Clair River, a critical initial step to enhancing
feature extraction within the deep autoencoder is spectral dimensionality reduction using PCA. This technique
transforms the original data into a new space with reduced dimensions while minimizing information loss. It
involves selecting the eigenvalue that contributes most to variance, thereby reducing the dimensionality of the
entire dataset without significant loss in classification accuracy and ensuring faster computations [24]]. This
integration expedites learning convergence and improves the extraction of meaningful and less redundant fea-
tures in the latent space of the network, capitalizing on the synergies between PCA’s dimensionality reduction
capabilities and the deep learning strengths of autoencoders [25].

3.2 Data segmentation

Data segmentation was carefully established to provide an in-depth picture of the study area. A preliminary
field survey was carried out based on available maps and Google Earth images, supplemented by previous
analyses of the area. Regions of interest (ROIs) were precisely selected for each class to identify specific areas
for analysis. Figure [6illustrates the different regions of interest (ROISs) and their locations. Next, the Spectral
Angle Mapper (SAM) algorithm was deployed to segment the hyperspectral image and generate a detailed
map, accurately characterizing the different regions of the study area. The SAM (Spectral Angle Mapper)
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Figure 6: ROI Selections.

algorithm is based on the measurement of the spectral angle between each pixel of the hyperspectral image and
the corresponding spectra of the regions of interest (ROI). By calculating this measure, SAM evaluates spectral
similarity, enabling precise segmentation based on the spectral properties of different areas [26]]. This process
promotes the production of a valid map, offering a detailed representation of the distinct features present in the
study area.

3.3 Data description

The dataset used in this study comprises 280 x 280 pixel hyperspectral images, each containing 32 spectral
bands (subject to PCA reduction) and originating from the St Clair River region. In Figure[7] the false color
representation of the St Clair River region is shown alongside the corresponding segmented image for clarity.
This segmented image, measuring 280 x 280 pixels, comprises distinct classes: Unclassified, Water, Water 2,
Corn, Reed, Grass, and Tree. This stratification by class provides a solid basis for assessing the accuracy of the
classification. Our labeled data was randomly divided into 70% for training, 10% for validation, and 20% for
testing, ensuring that all classes were present in each subset during our experiment. It is crucial to point out
that this method of dividing the data improves our model’s ability to handle and process unbalanced data.

4 Data modeling

4.1 Feature extraction using DAE

A deep autoencoder is a neural network that aims to produce a lower-dimensional representation of the input
data, commonly called latent space [27]. The encoder compresses the input data into a lower-dimensional
latent representation while the decoder maps the latent representation back to the original input space [28]],
[29]]. DAEs are applicable in diverse applications, spanning image compression, anomaly detection, and fea-
ture extraction [29]]. For instance, autoencoders are employed in hyperspectral image classification to acquire
a compact representation of spectral bands. It serves as an input for classifiers, thereby enhancing classifica-
tion performance. Figure [§ represents our deep autoencoder architecture comprising multiple fully connected
blocks to extract the features from our hyperspectral image. The architecture encompasses both encoding and
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Figure 7: Saint Clair river data. (a) False Color image, (b) Segmented Image.

decoding networks. The coding network includes five fully connected blocks, each housing 1024, 512, 256,
128, and 64 neurons. The decoder network mirrors the encoder’s structure and integrates five fully connected
blocks with corresponding 64, 128, 256, 512, and 1024 neurons. The autoencoder takes as input a 56448 x
32 hyperspectral image, where 32 represents the spectral bands after the PCA process, and produces as output
a hyperspectral image of identical dimensions; in each block, a dense layer is followed sequentially by an L2
regularization with a penalty coefficient of 0.01. We selected L2 regularization for its ability to effectively
mitigate overfitting, thus improving the generalizability of our model. This regularization technique avoids
excessive learning from the training data and strikes a balance between model complexity and performance
[15]. A subsequent normalization layer is applied to normalize activations, facilitating training convergence by
counteracting covariate shift issues. After the encoder, a flattening layer extracts the latent vector pivotal to the
classification layer.

The training process of the DAEs is repeated N times based on the designated number of epochs and typi-
cally performed by minimizing the reconstruction error between the original input and the reconstructed output,
which is commonly measured by the mean squared error (MSE) loss function:

N
Lyse = % XZ||I,+.CEZ||2 (3)
i=1
Where N is the number of training samples, z; is the i*” input sample, and ; is the corresponding reconstructed
output from the autoencoder. During the training phase, the rectified linear unit (ReLU) activation function is
used in all layers of the encoder and decoder networks, except for the last layer of the decoder network, which
uses the sigmoid function to ensure the output values are between 0 and 1 [30]. The Adam optimizer is used
for effective gradient descent. Following training, the resultant deep autoencoder was harnessed to extract
high-level features from hyperspectral data.

4.2 Classification using MLP

In the context of hyperspectral image classification for the Saint Clair River, the extracted features from the
Deep Autoencoder (DAE) are subsequently utilized for classification using a Multilayer Perceptron (MLP).

36
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The MLP is a type of artificial neural network designed for supervised learning tasks, such as classification
[31]. The Multilayer Perceptron consists of an input layer, one or more hidden layers, and an output layer.
Each layer is composed of interconnected nodes, or neurons, with each connection characterized by a weight
[32]. The latent vector from the Deep Autoencoder serves as the input to the MLP, containing only a single
hidden layer with 100 units. The output can be expressed as:

a(h) = ReLU(W (h) x a(h — 1)) + b(h) )

Where a(h) denotes the output activation at the hidden layer; W (h) and b(h) represent the weight and bias
parameters, respectively, at the hidden layers. ReLU is the rectified linear unit activation function, defined as
follows:
] >0
ReLU(zx) = {% @ 5)
0 if ©<0
The output layer of the DAE-MLP method contains ¢ elements to map to the label of the class designated by .
The formulation is as follows:
y=wi Xa-+ by (6)

Where w; and b; represent the weight and bias vector between the hidden layer and the output layer, and y is the
output of the DAE-MLP method. To accelerate the convergence of our deep learning model by automatically
adjusting the learning rates for each parameter, we used the Adam optimizer.

We conducted our experiments using the Python programming language and harnessed the power of the Ten-
sorFlow framework for machine learning and data processing.

Our computing infrastructure had an Intel Core i7-12700F CPU boasting 64 GB of memory. Additionally,
we optimized our computations by leveraging the capabilities of a GeForce RTX 3070 Ti GPU, ensuring both
efficiency and reproducibility in our results.

5 Results Discussion

5.1 Hyperparameters

In machine learning, hyperparameters are configuration parameters that govern the learning process and impact
the performance and convergence of machine learning algorithms [33]]. Understanding and appropriately set-
ting hyperparameters are crucial steps in optimizing the performance of machine learning models. In our study,
we meticulously selected optimized hyperparameters to enhance the classification performance of our models.
Specifically, hyperparameters in the context of machine learning encompass various settings that steer the be-
havior of the learning algorithm, such as the learning rate, regularization strength, and architectural character-
istics of the model. For our Autoencoder (DAE) architecture and each employed classifier—Ilogistic regression,
K-Nearest Neighbors, Random Forest, Gradient Boosting, Support Vector Machine, and Multilayer Perceptron
we painstakingly fine-tuned these hyperparameters to strike a delicate balance between model complexity and
predictive accuracy. We iteratively experimented with different hyperparameter configurations and used vari-
ous optimization techniques to adapt our models to the unique characteristics of our dataset. The final selection
of hyperparameters was guided by empirical performance measures, ensuring the suitability of our models
for the intended task. Table [2| and [3| provide a comprehensive summary of the hyperparameters used in our
experiments.

5.2 Evaluation metrics

Various evaluation metrics are employed to assess the performance of our classification approach. Overall
Accuracy (OA) assesses the proportion of correctly classified samples.
(TP+TN)

OA:GT+TN+FP+FN)

)

38
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Feature Extraction Hyperparameters Optimized Values
Activation Function ReLU
Our Output Function Sigmoid
Deep Kernel Regularizer L2 Regularizer (0.01)
Autoen- Regularization )
Batch Normalization 5
coder ..
(DAE) Optimizer ' Adam
Loss Function Mean Squared Error (M SE)
Epoch 100
Batch Size 256

Table 2: Optimized Hyperparameters for Deep Autoencoder.

This metric provides a fundamental assessment of the model’s ability to classify objects correctly [34]. The
Kappa Coefficient is a widely used measure that considers the agreement expected by random chance, offering

a more robust assessment through:
Py—-P.
K = — 8
appa = ®)
While P, is the observed agreement, and P, is the expected agreement by chance. Average Accuracy (AA)
goes beyond overall accuracy by calculating class-specific accuracies and averaging them:

1. = 7p
AA = (= v
(N)XZ%TH+FH ©)

Where T'P is the number of true positives, T'N is the number of true negatives, F'P is the number of false
positives, F'N is the number of false negatives and T'P; and F'P; are the numbers of true positives and false
positives, respectively, for class 7. This nuanced approach identifies potential disparities in the model’s perfor-
mance across different classes, providing valuable insights.

Additionally, precision, recall, and F1-Score complement these measures.

Precision measures the proportion of authentic positive samples among predicted positives, while recall as-
sesses the proportion of true positive samples among actual positives. The F1-Score is the harmonic mean,
offering a balanced evaluation of the classifier’s performance.

TP
recision TP+ FP) (10)
TP
Recall = o p T FNY (b
F1— Score — 2 x Precision x Recall (12)

Precision + Recall
Using these additional evaluation measures, we can obtain a more complete understanding of the strengths and
weaknesses of the classifier [34].

5.3 Comparative results and analysis
5.3.1 Feature extraction using our DAE

Feature extraction is a pivotal stage in hyperspectral image analysis, primarily owing to the high dimensional-
ity and redundancy of the data [35]]. In this study, we harnessed a deep autoencoder-based approach to extract
salient features from hyperspectral images captured over the Saint Clair River. This section is dedicated to a
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Classification Hyperparameters Optimized Values
Logistic Parameter C 1.0 — 0.1 — 0.001
Regres- Penalty L? - L1 — None
sion Solver Liblinear—Lbf gs—Newton-cg
Max Iteration 1000
Number of Estimators 500 — 1000 — 1500 — 2000
Maximum Depth 10 — 20 — 30 — 40 — 50
Random .
Forest Maximum Features Auto — Sqrt — Log?2
Minimum Number to Split 2—-5—-10—-15—-20
Minimum Number for a Leaf 1-2-5—-10—-15
n-neighbors 1-2...—-6—-..10
Algorithm Auto — BallTree — Brute
K-Nearest Parameter P 2
Neighbors Weights Uniforme — Distance
Leaf Size 30
Metric Minkowski
Number of Estimators 100 — 200 — 300 — 400 — 500
. Minimum Samples in Leaf 1
ggsi‘;“gt Learning Rate 0.1 — 0.01 — 0.001
Max Depth 1-2-3-4-5
Loss Log-Loss — Exponential
Parameter C 1.0 -0.1 —-0.01
Support Kernel Rbf— Linear— Poly— Sigmoid
Vector Degree 1-2-3-4-5
Machine Gamma Auto — Scale
Max Iteration 1000
Hidden Layer Sizes 50 — 100 — 150 — 200
Solver Lbfgs — Sgd — Adam
Multi Layer Batch Size Auto
Perceptron Learning Rate Constant(0.001)
Activation Function ReLU
Max Iteration 1000

Table 3: Optimized Hyperparameters for Classifier Models.

comprehensive examination of our feature extraction results, delving into their impact on the performance of
various cutting-edge approaches.

These approaches include convolutional neural networks (CNN) [[36]], the spectro-spatial feature extraction
method (SSFC) [6]], the stacked autoencoder (SAE) method [37]], and the segmented SAE autoencoder (S-
SAE) [16]. These sophisticated approaches were meticulously trained using the mean square error (MSE) loss
function and the Adam optimizer for gradient descent, undergoing 100 training epochs with a batch size of 256.
Figure [9] compares the training and validation losses across various feature extraction methods, prominently
featuring the proposed DAE-MLP approach. This figure is crucial for evaluating the effectiveness and gen-
eralizability of each approach, as reflected by the losses observed during the training and validation phases.
The green line represents training losses, which indicate the errors the model makes on the training data. In
contrast, the red line depicts validation losses, showcasing the model’s performance on a separate dataset not
used during training. In particular, a lower validation loss indicates a model’s ability to generalize well to new,
unpublished data. In particular, this figure reveals that our approach has the lowest validation loss, with a value



41 Youcef Attallah et al. / Electronic Letters on Computer Vision and Image Analysis 24(2):27-48, 2025

le-5

—8— Training Error
—— Validation Error

T u T
SAE-MLP S-SAE-MLP DAE-MLP

Methods

T U
CNN-MLP SSFC-MLP

Figure 9: Training and validation loss comparison: our DAE-MLP vs. state-of-the-art methods.

of 9.34 x 10705, outperforming all other methods displayed. This finding underscores DAE-MLP’s supe-
rior generalization capability, suggesting it is exceptionally well-suited for accurately predicting unseen data.
Moreover, the DAE-MLP demonstrates a lower training loss than other methods, highlighting its proficiency in
capturing and learning the relationships within the training features. These results confirm the robustness of the
DAE-MLP approach and highlight its potential for real-world applications. The model’s strong performance
on training and validation datasets signals its readiness for deployment in practical scenarios where accurate
and reliable predictions are crucial.

5.3.2 Classification using DAE with ML classifiers

This section presents an analysis of classification accuracy results for the Saint Clair River dataset. The ob-
jective is to evaluate the performance of various machine learning classifiers when combined with our deep
autoencoder. Table ] provides valuable insights into the accuracy performance of the different classifiers. Each
classifier’s average accuracy (AA), overall accuracy (OA), and Kappa coefficient are presented, along with their
standard deviations.

Class Logistic Random KNN Gradient SVM MLP
Regression Forest Boosting

Unclassified 48.93+0.81 79.41+£0.52 89.53+0.19 88.71£0.36 94.71£0.42 95.03+0.76
Water 92.64+0.20 91.89+0.32 98.66+£0.92 98.62+0.10 98.81+0.94 98.46+0.33
Water 2 49.2242.39 83.40+0.91 83.76+0.36 89.85+0.79 92.83+0.27 94.53+0.30
Corn 83.08+0.46 78.32+£1.06 93.52+0.48 90.07+2.38 94.23+0.19 96.46+0.73
Reed 91.1240.57 92.3240.72 95.26£0.30 96.36£0.20 98.32+0.53  99.37+0.25
Grass 87.23£1.12 91.33£0.88 94.77+0.21 95.12+0.08 97.69+0.17 98.21+0.18
Tree 92.07+£0.27 95.62+0.42 97.03£0.69 97.61+£0.42 98.07+0.33 98.31+0.59
OA 88.09+0.31 89.53+0.42 95.09+0.32 95.68+0.37 97.57+£0.35 98.51+0.24
Kappa 87.374£0.96 88.21£0.34 93.81+0.72 94.45+0.48 96.87+0.36 98.03+0.23
AA 87.42+0.82 88.73£0.93 95.22+0.45 94.07+£0.31 97.01£0.93 97.43+0.12

The MLP classifier demonstrates a high overall accuracy of 98.51%, eclipsing the performance of all other
classifiers by a substantial margin. This remarkable accuracy underscores the exceptional capabilities of MLP

Table 4: Classification Accuracy for the Saint Clair River Dataset.
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within the classification task. Furthermore, the Kappa coefficient of 98.03% is a testament to the robust agree-
ment between the predicted class labels and the actual segmented image labels obtained through MLP. This
coefficient reflects a significant enhancement in classification performance across all classes compared to the
other models. This outstanding performance is intrinsically tied to the foundational role played by our pro-
posed Deep Autoencoder (DAE). The synergy between DAE and MLP within our approach has yielded highly
proficient results in extracting and classifying hyperspectral images. Comparatively, MLP’s accuracy surpasses
Logistic Regression, Random Forest, K-Nearest Neighbors (KNN), Gradient Boosting, and the Support Vec-
tor Machine (SVM). While delivering commendable performance, SVM lags behind MLP in terms of overall
accuracy by approximately 0.94%, highlighting MLP’s superiority in classification precision. This remarkable
performance by MLP reinforces its status as the preferred classifier within our approach, offering a notable
advantage in accurately categorizing hyperspectral data over its counterparts.

In evaluating the performance of various machine learning models on the St. Clair River dataset, we utilized
three key metrics: precision, recall, and F1-score. These metrics provide a comprehensive view of each model’s
ability to correctly classify instances, identify relevant data points, and balance precision and recall. Table [3]
summarizes the performance metrics for six models: Logistic Regression, Random Forest, K-Nearest Neigh-
bors (KNN), Gradient Boosting, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). Figure
[I0] presents the confusion matrices to give a detailed overview of the accuracy of the models in predicting each
class. The MLP model consistently outperforms other models across all metrics, achieving a precision of

- Logistic Random KNN Gradient SVM MLP
Regression Forest Boosting

Precision 88.06+0.93 88.73x0.37 95.02+0.23 95.31+0.74 97.22+0.52 98.72+0.13

Recall 87.38+0.57 88.42+0.78 93.88+0.93 95.57+0.47 97.03£0.29 98.43+0.16

F1-Score 87.22+1.01 87.93+x0.72 95.06+0.19 93.60+1.03 96.22+0.64 97.27+0.53

Table 5: Comparative analysis of several machine-learning classifiers.
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Figure 10: Comparison of a confusion matrix for classification results on Saint Clair river dataset.
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98.72%, a recall of 98.43%, and an F1-Score of 97.27%. This performance is attributed to the MLP’s ability to
capture complex, non-linear relationships in the data through its deep learning architecture, which is well-suited
for handling high-dimensional data with intricate patterns, such as the spectral data used in this study.

Logistic regression as a linear model shows the weakest performance, particularly for the unclassified and Reed
classes. This limitation is likely due to the model’s inability to capture non-linear relationships, which are cru-
cial in distinguishing between closely related spectral signatures.

KNN and Gradient Boosting perform better than Logistic Regression, with Gradient Boosting showing a no-
table increase in accuracy due to its ensemble learning technique that combines multiple weak learners to form
a strong classifier. However, classification errors show the inability to handle overlapping features between
classes.

SVM, known for its effectiveness in high-dimensional spaces and when clear margin separation exists between
classes, performs better than Logistic Regression and Gradient Boosting but still faces challenges, particularly
with the Water 1 and Reed classes. This suggests that the kernel used in SVM might not fully capture the
complex boundaries in the data.

The confusion matrices in Figure |10 highlight these differences, showing how MLP’s superior ability to mini-
mize misclassification errors across all classes makes it the most robust model for this dataset. The consistent
performance of MLP across various evaluation metrics underscores its suitability for tasks requiring high pre-
cision and recall, such as environmental monitoring, where accurate classification of land and water features is
crucial.

These results justify the comparison by illustrating how different models leverage their inherent strengths and
face unique challenges, influencing their effectiveness in this specific application. The MLP model’s overall su-
perior performance suggests that deep learning techniques may be more appropriate for datasets with complex,
non-linear patterns, providing a clear justification for their use over traditional methods.

5.3.3 Comparison with state of the arts

To demonstrate the superiority of our DAE-MLP model in feature extraction and vegetation classification in
the Saint Clair River, we systematically compared it to established state-of-the-art approaches. By combining
these approaches with the MLP classifier, our DAE-MLP model generated exceptional results, significantly
outperforming other methods.

Class CNN- SSFC- SAE-MLP S-SAE- DAE-MLP
MLP MLP MLP
Unclassified 91.95+0.07 90.28+0.23  92.74+0.19 93.82+0.21 95.03%0.76
Water 90.64+0.23  90.29+0.43 98.16+0.13  98.82+0.36 98.46+0.33
Water 2 88.12+0.36  89.96+0.73  92.56+0.08 92.85+0.72 94.53+0.30
Corn 88.08+0.62 89.02+0.36  93.59+0.14 94.08+0.38  96.46+0.73
Reed 94.29+0.63 95.42+0.82 97.16+0.32 98.36x0.29  99.37+0.25
Grass 91.45+0.27 90.63+0.85 92.17+0.81 96.12+0.10 98.21+0.18
Tree 92.36+0.71 94.72+0.62 98.07+£0.05 98.46+0.52 98.31+0.59
OA 91.48+0.31 91.86+0.69 95.92+0.12 97.58+0.33  98.51+0.24
Kappa 91.77£0.46  92.03+0.34 95.48+0.33 97.28+0.43  98.03+0.23
AA 92.02+0.08 92.93+0.73 96.54+0.08 96.88+0.59 97.43+0.12

Table 6: Comparison of accuracy of our DAE-MLP with state-of-the-art methods.

The classification results, shown in Table[6] highlight the outstanding performance of our DAE-MLP approach.
It achieved an average accuracy (AA) of 97.43%, an overall accuracy (OA) of 98.51%, and an impressive
Kappa coefficient of 98.03%. In contrast, our model outperforms its closest competitor, S-SAE-MLP, with a
difference of 0.55% in AA, about 0.93% in OA, and 0.75% in the Kappa coefficient. This significant dispar-
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ity in the three evaluation metrics highlights the notable superiority of our DAE-MLP model compared to its
counterparts. Figure [IT] presents a comprehensive comparative analysis of the precision, recall, and F1 scores
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Figure 11: Comparative analysis of our DAE-MLP with state of the art.

across different models. DAE-MLP consistently attains the highest values in all three metrics, demonstrating its
exceptional ability to classify vegetation while minimizing misclassification errors. For example, in the " Tree”
class, DAE-MLP achieved a precision of 98.46%, recall of 98.31%, and F1-score of 98.38%, outperforming
the other models. This suggests that DAE-MLP has a lower rate of false positives and false negatives, making
it more reliable in practical applications. The consistency of our DAE-MLP indicates that the model not only
identifies vegetation classes accurately but also maintains a high balance between precision and recall, leading
to superior F1 scores.

The DAE-MLP model shows remarkable performance across all classes, including those with fewer samples,
such as ”Water 2” and ”Corn.” This robustness indicates that the model effectively handles class imbalances,
a common issue in hyperspectral image classification. The improved feature extraction and representation ca-
pabilities of the DAE-MLP allow it to maintain high accuracy even in less-represented classes. The results for
different vegetation types, such as “grass” and “reed,” where DAE-MLP achieved accuracies of 98.21% and
99.37%, respectively, highlight its adaptability and effectiveness across diverse categories. This adaptability is
crucial for practical applications in environmental monitoring and agricultural management.

The comparison with SAE-MLP and S-SAE-MLP models, which also use autoencoder architectures, under-
scores the advanced nature of the DAE-MLP’s design. The inclusion of denoising autoencoders likely enhances
the model’s ability to handle noisy data and improves generalization performance, resulting in higher classifi-
cation accuracy.

The DAE-MLP model demonstrates clear advantages over the state-of-the-art in accuracy, precision, recall,
and F1-score. The deep feature extraction capability, effective handling of class imbalances, and adaptability to
various classes constitute the main factors contributing to its superior performance. This makes the DAE-MLP
model a highly effective tool for hyperspectral image classification tasks in the Saint Clair River and similar
environments.

5.4 Comparative evaluation on benchmark datasets

To assess the generalizability and robustness of our proposed method, we applied it to three widely recognized
benchmark hyperspectral datasets: Jasper Ridge, Indian Pines, and Salinas Scene. These datasets were selected
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due to their diversity in spectral characteristics, spatial resolution, and application domains, offering a compre-
hensive evaluation of our method’s performance across different scenarios.

The Jasper Ridge dataset contains hyperspectral imagery of a natural reserve characterized by a mix of veg-
etation and bare soil, providing a challenging environment with subtle spectral variations. The Indian Pines
dataset, on the other hand, represents an agricultural region with a mixture of crops and forested areas, offering
a diverse but structured set of land cover classes. Finally, the Salinas Scene dataset includes agricultural fields
with high intra-class spectral similarity, making it an excellent benchmark for evaluating fine-grained classifi-
cation capabilities [38].

To ensure consistency and replicability, we maintained the same training parameters across all experiments,
including the architecture of the autoencoder, the Multi-Layer Perceptron (MLP) configuration, and the prepro-
cessing steps, such as PCA-based dimensionality reduction. This uniform approach allowed us to objectively
compare the performance of our method on these datasets while validating its applicability in various ecological
and environmental contexts.

Table 7: Comparison of DAE-MLP performance with state-of-the-art methods on Jasper Ridge, Indian Pines,
and Salinas Scene datasets.

Dataset Metric CNN-MLP SSFC-MLP SAE-MLP S-SAE-MLP DAE-MLP
OA (%) 96.51+£0.81 96.79+0.32 98.39+097 9821+0.66 99.47 +0.16

Jasper Ridge  Kappa (%) 96.02+0.57 9589+0.49 98.68+0.72 99.07+0.39 99.79 = 0.07
AA (%) 95.67+0.89 9630+092 97.94+0.27 98.62+0.66 99.78 +0.20

OA (%)  86.63+£0.68 87.59+0.27 90.36+0.53 92.22+033 95.98 +0.54

Indian Pines  Kappa (%) 88.65+0.72 87.30+0.53 9147+0.79 9227+0.82 96.58 +0.09
AA (%) 87.65+0.54 8836+0.47 9097+£0.65 9246+0.71 97.07 £0.33

OA (%) 87.89+0.28 88.43+0.34 9341+054 94.02+023 97.72+0.71

Salinas Scene Kappa (%) 88.40+0.41 88.74+0.93 92.57+0.39 9541+0.55 98.02 +0.22
AA (%) 8852+0.29 8795+041 93.72+095 95.19+0.57 98.27 +0.36

The comparative evaluation presented in Table [/| highlights the effectiveness of the proposed DAE-MLP
method compared to state-of-the-art approaches across the three benchmark datasets: Jasper Ridge, Indian
Pines, and Salinas Scene. The metrics considered include Overall Accuracy (OA), Kappa coefficient, and Av-
erage Accuracy (AA), which collectively provide a comprehensive assessment of classification performance.
For the Jasper Ridge dataset, DAE-MLP achieved the highest performance across all metrics, with an OA of
99.47%, a Kappa coefficient of 99.79%, and an AA of 99.78%. These results demonstrate the robustness of the
proposed method in handling complex vegetation classes with subtle spectral differences, outperforming the
second-best approach, S-SAE-MLP, by a notable margin.

In the Indian Pines dataset, characterized by diverse land cover types, DAE-MLP again achieved superior re-
sults, with an OA of 96.58%, a Kappa coefficient of 96.50%, and an AA of 97.07%. These metrics indicate the
method’s ability to accurately classify a mixture of agricultural and forested areas, showcasing its versatility
compared to other methods like S-SAE-MLP and SAE-MLP, which performed marginally lower.

For the Salinas Scene dataset, which involves high intra-class similarity, the DAE-MLP method maintained
its dominance with an OA of 97.72%, a Kappa coefficient of 98.22%, and an AA of 98.27%. These results
underline the method’s capacity to distinguish subtle spectral differences between classes, which is crucial for
precise mapping in agricultural fields.

Overall, the DAE-MLP method demonstrated consistently superior performance across all datasets, surpass-
ing traditional CNN-MLP and advanced methods like S-SAE-MLP. The incorporation of deep autoencoders
for feature extraction, combined with the PCA-based dimensionality reduction and the MLP classifier, signif-
icantly contributed to its high accuracy. This consistent performance across diverse datasets underscores the
generalizability and robustness of the proposed approach, making it a promising tool for hyperspectral image
classification in various ecological and environmental applications.
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6 Conclusion

This study highlights the remarkable effectiveness of a combined approach that merges deep autoencoder-based
feature extraction with the robust multi-layer perceptron (MLP) classification capabilities for hyperspectral
image classification and vegetation mapping within river ecosystems. Our dedicated focus on the Saint Clair
River region has unveiled the full potential of this methodology. The results of our study have implications
for a range of applications, including forest and river area management and conservation, land use planning,
and monitoring environmental change over time. By demonstrating the effectiveness of deep learning-based
approaches to hyperspectral image classification, our study contributes to the growing body of research in this
area. In addition, it provides insight into the potential of these approaches for environmental monitoring and

mapping.
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