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Abstract

This paper presents an in-depth review on the early diagnosis of lung cancer using deep neural networks
(DNN). First, the significance of lung cancer and the need of this review is discussed. The various archi-
tectures of the DNN, a critical discussion on the existing datasets, various methodologies, challenges in the
diagnosis and different evaluation metrics are reviewed. Moreover, the performances of DNN-based tech-
niques for segmentation, nodule detection, and nodule classification are also presented. Further, this review
covers the malignancy classification along with the nodule detection tasks. A comparative analysis and lim-
itations of the existing methods is also provided. Thus, this may provide necessary information to all the
researchers to prepare a robust methodology for early detection of lung cancer and hence proper diagnosis.

Keywords: Convolution neural network, pulmonary nodule, nodule detection, nodule classification, 2D,
3D.

1 Introduction

Lung cancer is the irregular and unrestrained growth of cells in the lung tissues. Every year millions of people
die because of lung cancer. The survival rate of patients suffering from lung cancer is lower than the colon,
breast, and prostate cancers collectively [1]. In India, 63,475 people died because of lung cancer in the year
2018 [2]. According to the Indian Council of Medical Research, 27.1% of new cancer cases (3.7 lakhs) will
be because of tobacco use [3]. If not treated at an early stage, lung cancer may spread to the other parts of
the body [4, 5]. As per the report approximately 12.5% of patients come for treatment at their earlier stage
[6]. The causes of lung cancer among patients may be long term tobacco smoking (85%), air pollution (10
-15%), radioactive gas, polluted drinking water containing high levels of arsenic material, and other reasons
[7]. General symptoms that may signify lung cancer are blood in the coughing, changes seen in the pattern
of coughing, harsh coughing, pneumonia, chest pain, unexpected loss in weight, appetite loss, fatigue, hoarse
voice and wheezing [8]. The broad classification of lung cancer is shown in Figure 1. There are some works
on SCLC (Small cell lung cancer) [9, 10, 11], however, this review focus only on NSCLC (Non-small cell lung
cancer).

Lung nodules or pulmonary nodules are masses of tissues with varied diameters ranging from 2 mm to 30
mm [12]. A pulmonary nodule can be further classified as benign or malignant. The benign nodules size is
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Figure 1: Types of Lung cancer [34]

generally smaller than 6 mm. It is in regular shapes, smoother edges and even color. It does not spread to
the other parts of the body and it remains stable for at least two years. Malignant nodules change their size,
shape, and appearance. It doubles its size every four months on average. It has an irregular shape, lobulated and
spiculated margin. Table 1 lists the various attributes of a pulmonary nodule. The early detection of oddities

Attributes Details
Subtlety Distinction difficulty due to its surroundings. Range of ratings from 1 to 5 means highly subtle to obvious
Internal structure The inner content of a nodule may be a soft tissue, fluid, fat or air
Calcification Sometimes calcium accumulation may appear as nodules in CT images. It has ratings from 1 to 6 meaning popcorn, laminated, solid, non-

central, central or absent respectively.
Sphericity Describes how convex a nodule is in three dimensions. Where rating of 1 means it is linear, 3 means it is ovoid and 5 means it is round.
Margin States the clarity in the margin. It may be poorly defined rated as 1 or sharp margin rated as 5.
Lobulation A nodule may have one or more lobules present in the nodule margin.
Spiculation The presence of spikes shape is marked or not. If spikes are present in the nodule, then it has high chance of nodule to be a malignant nodule.
Texture A nodule can have solid, part-solid or non-solid texture.
Malignancy How likely it is to be a cancerous nodule. Range of ratings from 1 to 5 means highly unlikely to highly suspicious.

Table 1: Attributes of a lung nodule

in lung tissues at a curable stage may increase chance of survival. Modern medical imaging modalities like
X-ray imaging (chest radiography) [13], sputum cytology, Magnetic resonance imaging (MRI), and computed
tomography (CT) [14, 15] help in assisting the diagnosis and treatment of lung cancer. In the lung cancer
domain, most researchers work on CT scan [16]. CT scans contain a series of X-ray images taken from many
angles. There are many visual challenges in detecting nodule malignancy from images due to the heterogeneity
of nodules in texture, shape, and intensity [17]. Further, the complexity of the surrounding environment, a
high degree of similarity between pulmonary nodules and surrounding tissues, nodules being similar to the
lung walls in terms of intensity, and small-sized nodules having the similar intensity to the surrounding noise
adds on to the existing challenges [17, 18, 19, 20]. A radiologist has to search for nodules in every image of a
patient’s CT scan and mark the malignancy details for each of the nodules based on its characteristic features. It
is a tedious process and highly subjective. A study in [21] reported that the overall error rate is 7.6% for every
53 patients. A computer-aided diagnosis (CAD) system, can assist radiologists in diagnosing the pulmonary
nodules and detecting nodules [22].

The papers [23, 24, 25, 26], published in the year 2018, 2021, 2021 and 2021 respectively, focus on work
that use both feature engineering and deep learning. Among the discussed approaches, only few approaches
are based on deep learning. The papers [27, 28] published in the year 2019 and 2020 respectively, focusses
explicitly only on the convolutional neural network-based methods. The paper [29, 18], published in the year
2018 and 2020 respectively, focus on all the computer-aided detection methods. The paper [30], published in
the year 2019, surveys on many other lung diseases like Pulmonary embolism (PE), Pneumonia, Tuberculosis,
Interstitial lung disease (ILD). The paper [31] discusses specifically on the segmentation of the lung cancer ra-
diotherapy. The paper [32] discusses methods for nodule detection and classification but it lacks the correlative
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studies of histology findings with CT findings. It also does not signify the importance of nodule attributes in
lung cancer diagnosis. Also, the supervised and unsupervised approaches are not discussed explicitly. The pa-
per [33] focus only on the 3D CNN based methods. While, this review paper presents a comprehensive review
on different existing deep neural network-based methodologies to detect and classify the lung nodules.

The motivation behind this work is to provide a state-of-the-art review to researchers on deep learning-
based techniques for lung cancer nodule diagnosis. Descriptive tables presented in Section 5 brings out the
comparative view, on the grounds of main methods employed, diagnostic tasks, datasets used, and performance.
Followed by discussion and open issues with future research directions. This study is useful for beginner
researchers, providing the latest insights into this domain.

The scope of this review identifies following:

1. Which medical imaging modalities in lung cancer classification is useful?

2. What are the various medical CT imaging datasets used in lung cancer diagnosis?

3. What techniques are used by researchers to preprocess and augmentation of datasets?

4. How are the DNN based techniques applied to lung cancer nodule detection and diagnosis using CT
images?

5. How is model performance evaluated?

Further, the paper’s organization is as follows: Section 2 presents the articles selection methods. Section
3 describes the DNN architectures used to diagnose lung cancer. Section 4 provides evaluation metrics and
Section 5 reviews the state-of-the-art DNN techniques for pre-processing, segmentation and data augmentation.
Section 6 reviews lung nodule detection and classification approaches. Section 7 lays out the observations
based on literature review to summarize the methods adopted by researchers. In the end, Section 8 concludes
this review.

2 Methodological Considerations and Approaches

The number of articles using DNN for diagnosis of pulmonary nodules has massively increased in the past three
years. Figure 2 shows the trend of published articles in this domain. In this study, 52 recent articles related to
detection and diagnosis of pulmonary nodules in chest CT scans are reviewed.

The most recent articles published in the time-period 2018 to 2021, are selected from the following valid
sources: (1) ACM, (2) ScienceDirect, (3) PubMed, (4) Springer, (5) Web of Science, (6) IEEE Xplore, and (7)
Scopus. Following generic keywords combination are used to search the articles: ’neural network’, ’deep neu-
ral network’, ’convolution neural network’, ’lung cancer’, ’pulmonary nodules’, ’medical image’, ’computed
tomography’, ’lung cancer classification’, ’detection’, ’segmentation’ and ’chest CT scan’.

Initially, the studies from high quality ranked journals according to the ’Scientific Journal Rankings’ are
selected. After reading their abstract the articles were further selected. In this review, the fifty-two selected
articles are reviewed in depth and comprehensive summary of their work are provided.

3 Deep Neural Network

For decades, multidisciplinary researchers are working on automating the medical diagnosis systems [35, 36].
There are various architectures of deep neural networks that have recently evolved to meet need of automating
the medical diagnosis systems [37, 38]. Below are the most common architectures that are further modified to
adapt to the automated lung cancer diagnosis. This section briefly introduces the DNN architectures. These
DNN architecture are further modified to get better performance.
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Figure 2: Number of papers published annually having following keywords “deep neural network” and “lung
cancer” and “pulmonary nodule” from the year 2015 to 2020.

3.1 Convolutional Neural Network

Convolutional neural network (CNN), is a feedforward neural network. CNN uses 2D or 3D array filters to
extract meaningful features from the input. The convolutional layer extracts meaningful features. The pooling
layer reduces the dimension of feature maps. The normalization layer normalizes the feature maps. Fully-
connected layers flatten all feature maps into a single 1D array to compute the output. An activation, for
example, softmax or sigmoid, is used to give a final prediction. These models are capable of preserving the
spatial and temporal information of the image. The development of CNN has improved the diagnosis of lung
using medical images [39, 40, 41].

3.2 Faster-RCNN

Faster-RCNN is proposed for object detection tasks in natural images [43]. The architecture of faster-RCNN
contains three subnetworks that are feature network, RPN (Region proposal network), and detection network.
RPN is a network of convolutional layers that proposes different sized feature maps and a value that indicates
object presence. Further, to compensate for the problem of size variation in feature maps, ROI pooling is used.
The input to the detection network is the output from both the feature and RPN network. Its classification and
the regression layer generate the output class and regressed bounding box.

3.3 U-Net

U-Net is the most popular architecture for biomedical image segmentation [18]. The task of U-Net is to classify
every pixel in an image. The U-shaped symmetric network architecture has a contracting and expansive path
with skip connections between the corresponding layers. The local information extracted in the contracting
path maps with the global information in the expansive path. The convolution operations in the contracting
path down sample the image while the transposed convolution operation in an expansive path up sizes the
image. So, the localization and contextual information are preserved by concatenating the extracted features
from previous layers.

3.4 ResNet

ResNet are residual network [44]. It is known that more layers in DNN may extract a higher number of features.
Deeper networks, even 1000 layers, could be trained with ResNet. It improves the generalization ability of a
deep neural network. It is the combination of concept of identity mapping and residual mapping between the
network layers. Residual mapping is like adding a small error to the input to get to the final destination. In
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identity mapping, an identity matrix transmits the input data forward to avoid the information loss because of
vanishing gradients in deeper networks.

3.5 DenseNet

DenseNet is a densely connected convolution neural network [45]. The central concept behind DenseNet is the
reuse of features extracted from previous layers to the subsequent layers. Channel-wise concatenation combines
the input. Instead of using the summation operation in ResNet, DenseNet uses a concatenation operation to add
new details to the network’s standard information. DenseNet has a strong gradient flow. It has shown higher
parameters and computational efficiency.

3.6 Autoencoder

Autoencoders are the self-supervised learning network [46]. The encoder part of the autoencoder encodes the
input into compressed representation, and then the decoder will decode the compressed representation back to
the reconstruction of the input. Training does not have any labels. As a result, they are lossy and turns out to be
data-specific. The network architecture for both encoder and decoder can be any CNN, feedforward network, or
LSTM (Long short term memory) networks, depending on the use-case. Their main applications are denoising
of data, reduction of dimensionality in data, and anomaly detection.

3.7 GAN

GANs are generative adversarial networks [47]. The generator and the discriminator of GAN is neural net-
works. The generator generates fake images, and a discriminator network discriminates against the generator’s
fake image and the real image. First, the discriminator network trains while keeping the generator constant.
When the discriminator has learned to find the generator’s flaws, the generator trains by keeping the discrimi-
nator constant. The generator learns to fool the discriminator. The minimax loss function balances the training
process.

4 Evaluation Criteria and Measures

Table 2 shows the parameters of performance metrics. Some of the standard metrics are listed below.

Parameter Meaning
True positive (TP) correctly predicted malignant nodules
True negative (TN) correctly predicted benign nodules
False positive (FP) predicted malignant nodules that are actually benign
False negative (FN) predicted benign nodules that are actually malignant

Table 2: Parameters of performance metrics

Accuracy [48] is the proportion of correctly classified samples over all samples. The equation of the expres-
sion is

Accuracy(Acc) =
TP + TN

TP + FP + FN + TN
(1)

Sensitivity or true positive rate or recall [48] is the proportion of correctly classified malignant nodules to all
true malignant nodules. The equation of the expression is

Sensitivity(Sen) =
TP

TP + FN
(2)
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Figure 3: Methods in CAD-based diagnosis of lung cancer.

Specificity [48] is the proportion of benign nodules correctly classified to all benign nodules. The specificity
equation is

Specificity(SP ) =
TN

TN + FP
(3)

Sensitivity and specificity metrics are independent of the total samples in the dataset. The higher value of
accuracy, sensitivity, and specificity implies that a model has a low misdiagnosed rate, and its classification
ability is high. Precision is the measure of correctly detected samples among all detected samples.

Precision =
TP

TP + FP
(4)

False positive rate (FPR) is 1-specificity. It is expressed by equation

FPR =
FP

TN + FP
(5)

ROC or receiver operating characteristic curve is a pixel-wise analysis of the model. It shows the perfor-
mance of a binary classification model at various thresholds. It is a probability graph plotted between the TP
rate in the y-axis and the FP rate in the x-axis. The model has the best performance when the curve is towards
the upper left of the graph; that is when the TP rate is one, and the FP rate is 0. AUC or Area under the ROC
curve [48] evaluates the average performance of the model. A higher AUC value means a model can better
classify benign as benign and malignant as malignant. AUC can handle the data imbalance issues and make a
better decision about which classifier is the best. Competition performance metric (CPM): The average sensi-
tivity on following FP rates 0.125. 0.25, 0.5, 1, 2, 4 and 8 is called CPM. Dice coefficient [49] measures the
overlap. The highest overlap value is 1, and it means that the ground truth and the segmented image completely
overlap each other. The lowest value, 0, means that they have no overlap. It can be expressed as

dice(A,B) =
2 ∗ TP

2 ∗ TP + FP + FN
(6)

5 AI-Empowered Lung Cancer Detection: A Journey from Imaging to Diag-
nosis

Lung cancer diagnosis can be aided by computer programs. This process involves several key steps. Figure 3
shows various methods involved in CAD-based diagnosis of lung cancer. First, chest CT scans are performed
to image the lungs, creating a dataset of images for analysis. Details about these image datasets can be found in
Table 3. Figure 4 then illustrates the contributions of each dataset. Following image acquisition, the computer
program performs various tasks as outlined in Table 4. These tasks are crucial for identifying potential signs of
lung cancer.
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Figure 4: Different contributions for each of the dataset

5.1 Imaging the Lungs for Cancer Diagnosis

Computed Tomography or CT imaging modality [50] was first proposed in 1972 by Allan M. Cormack and
Godfrey N. Hounsfield. In CT scans, the X-ray tube rotates at different angles. It induces the X-ray photons
into patients which flows into their body. These X-ray photons are captured by the detectors, which uses various
algorithms to reconstruct the image digitally. Slice is generated by slowly moving the patient’s bed forward in
the tube. Depending on the kind of CT machine and tissue thickness, the generated image slice varies from
1-10 mm. The above process repeats several times to generate a 3D image. Images are captured using various
reconstruction algorithms.

The advancement of technologies in CT scanners has reduce the dose of radiation induced in patients by
70-80%. Modern CT scanners take only one or two seconds or a maximum of thirty seconds to complete the
scanning process. Compared to other modalities, CT is a fast, painless, and cost-effective imaging tool. Also,
no radiation remains in the body of patients after the scan. CT scanners have helped radiologists visualize
small-sized nodules that were earlier impossible to see with a film X-ray. Images acquired by a CT scanner
exhibit many differences in terms of kVp, mAs, reconstructed slice thickness, or reconstructed interval [44].
If the difference is less than 0, between reconstruction interval and slice thickness then the reconstructed CT
slices may overlap. There are various factors of CT images that are indirectly responsible for the performance
of a CAD system. Some of them are section thickness, dose, nodule location, and nodule size [51, 52].

Dataset Number of CT
scans

Access type Available work Web link

LIDC-IDRI 1018 Public [82, 46, 21, 83, 84, 57, 69, 85, 86, 53, 88, 74, 89, 63] https://wiki.cancerimagingarchive.net/
display/Public/LIDC-IDRI

LUNA16 888 Public [43, 67, 41, 18, 57, 69, 45, 87, 55, 71, 72, 65] https://luna16.grand-challenge.org/data/
DSB Kaggle
2017

2101 Restricted [70, 55] https://www.kaggle.com/c/
data-science-bowl-2017/data

ANODE09 55 Public [57] https://anode09.grand-challenge.org/
Home/

Tianchi 3000 Public [64, 71] https://tianchi.aliyun.com/competition/
entrance/231601/information

CPTAC 5043 Public [78, 58, 82] https://wiki.cancerimagingarchive.net/
display/Public/CPTAC-LSCC

ELCAP 50 Public [77, 75] https://veet.via.cornell.edu/lungdb.html
NLST 75000 Restricted [21] https://cdas.cancer.gov/datasets/nlst/

LIDC-IDRI: Lung Image Database Consortium Image Collection, LUNA16: Lung Nodule Analysis 2016, DSB: Data Science Bowl,
ANODE09: Automatic nodule detection 2009, CPTAC: Clinical Proteomic Tumor Analysis Consortium, ELCAP: Early lung cancer action program

Table 3: Available CT scans datasets used in the selected articles

5.2 Data Wrangling: Preparing, Segmenting and Augmenting the Data

Lung CT scans contain many incoherent details such as tissues, blood, trachea, chest walls which are irrelevant
information for the further processing. Also, the images captured might be of a low quality, which may severely

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://luna16.grand-challenge.org/data/
https://www.kaggle.com/c/data-science-bowl-2017/data
https://www.kaggle.com/c/data-science-bowl-2017/data
https://anode09.grand-challenge.org/Home/
https://anode09.grand-challenge.org/Home/
 https://tianchi.aliyun.com/competition /entrance/231601/information
 https://tianchi.aliyun.com/competition /entrance/231601/information
https://wiki.cancerimagingarchive.net /display/Public/CPTAC-LSCC
https://wiki.cancerimagingarchive.net /display/Public/CPTAC-LSCC
https://veet.via.cornell.edu /lungdb.html
https://cdas.cancer.gov /datasets/nlst/
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Diagnostic task Details
Lung segmentation The process segments out the lung parenchyma from the unnecessary background of CT scan images. It is an essential step.
Lung nodule detection The nodule detection task is about detecting a nodule candidate in the Region of Interest (ROI). An ROI may have more than one nodule

candidate. All of them need to be detected. Thus, it is a challenging task.
FP reduction The detection of FP nodules from all the detected nodules. The false-positive reduction is about decreasing the number of falsely detected

nodules that may be blood vessels or lung parenchyma or some other lung region. So that the accuracy of the model may increase.
Nodule classification For fully automated diagnosis, the model may further perform the classification of the detected nodules. The detected nodules are classified

into various categories by classifiers.

Table 4: Lung cancer diagnosis task

influence the performance. So, to boost the potential and reduce the complexity of the algorithm, there is a need
for data pre-processing.

5.2.1 Data Pre-processing

Generally, to minimize noise and subsequently enhance the quality of the raw CT images, -1000 HU (air) is
taken as lower bound and +3000 HU (bone) as upper bound for images. Further, it may be converted from
16-bit to 8-bit (0-255) pixel values [43]. Moreover, in some papers, the pixel values in the CT scan image are
transformed to Hounsfield unit (HU) scales and then converted to a range of (0-1) [53], this may decrease the
memory usage. The authors [44], created many samples for false positives and abstracts the HU values between
0 to 1.

For identifying the change in the intensity values, there are various filters like Daubechies filters [54], Gaus-
sian filters [55], Sato filter, vessel enhancing diffusion filter [56], Frangi filter [56], 3D bilateral smoothing
filters [57], enhancement filter [57], average window filters [57], linear noise filters [57] and many more. For
example, each gray pixel’s value is replaced by the neighborhood pixels gray matter in the median filtering
method. It is a non-linear smoothing filter. Some differential operator based filters like the Laplacian filter will
enhance such areas where there is a sudden change in gray pixels. Also, at the same time, it will weaken those
areas, which shows a continuous growth in gray pixel values. In [57] the enhancement filters enhance the nod-
ule structure and suppress the tubular shapes. After this step various multi-scale, multi-angle, and multi-view
ROI patches were extracted. An unsharp energy mask enhances the intensity value of edges [54]. Improved
threshold probability map, Discrete wavelet transform [54] are used to denoise images.

The study on density, pixel intensity, and cumulative density in the image gives much information about
pixel distribution. Further, based on the above study, the quality of the images may be improved [58]. The
accuracy may be increased by pixel intensive testing process that efficiently interprets pixels in the picture. The
undesired pixels, such as noise pixels, may be shifted. The image histogram filter, which is responsible for
improving the image’s quality, works best for different images [59]. For lung mask production, the optimal
threshold computed with FODPSO (Fractional-order darwin PSO-based optimal threshold) [46] can suit all
the CT slices. For accurate segmentation, there is a need to improve the lung mask structure done by a hole
filling and the boundary smoothing process by applying morphological operations [46]. For the juxta-pleural
nodules, the convex hull and dilation [55] pulmonary border extraction, and then mending [56] are useful. Since
bones are the high luminance tissue similar to the calcified nodules, intensity normalization makes bones look
like normal tissues [55]. The morphology-based operations and multilevel thresholding highlights the nodules
positioned near the lungs’ boundaries or are lying close to the vascular tissues [44].

Bilinear interpolation is commonly used to resize image patches [49]. However, this technique can introduce
limitations when using fixed-size cubes, like 64x64x64 or 32x32x32, centered around nodules. These cubes
may not capture the entire nodule volume, potentially reducing the information available to the deep learning
model. Ideally, 3D voxel patches should encompass the whole nodule [53]. In this particular study [57], the
authors addressed the challenge of working with two different datasets by resampling the CT scans using spline
interpolation and a sharp kernel.

In medical imaging, CT scans are often stored in DICOM format. For deep neural network processing,
DICOM data may need conversion to a more suitable format, such as PNG or JPG. The pre-processing steps
applied to the data can significantly impact the performance of a DNN-based model. While some approaches
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forego pre-processing altogether [60], it can be crucial for optimal model performance.

5.2.2 Segmentation Approaches

This work proposes a semi-automatic lung nodule segmentation method using a Dual-Branch Residual Net-
work (DB-ResNet) architecture [61]. DB-ResNet leverages multi-scale and multi-view extraction techniques
to capture both spatial and intensity information from 2D lung CT slices. For comparison, a Convolutional
Neural Network (CNN)-based encoder-decoder architecture, LDDNet [4], is also explored. Unlike traditional
U-Net models that employ summation at skip connections, LDDNet utilizes concatenation of feature maps
from earlier layers. LDDNet incorporates preprocessing steps like Laplacian and median filtering, potentially
improving segmentation accuracy.

Another approach leverages a hierarchical strategy. It first segments lung cancer regions using a K-means
algorithm and a deep neural network trained with an explosion function [59]. Then, it extracts local and
contextual information using central intensity pooling to achieve a Dice Similarity Coefficient (DSC) of 82.74%
and PPV of 79.64% [59].

This paper proposes a segmentation method for 3D tumor areas using an active contour model [62] . This
method allows contour points to move freely in all three dimensions, enabling the incorporation of both internal
and external energy forces in 3D space. Additionally, a multi-scale Gaussian filter is employed to effectively
capture tumor features. To further improve segmentation accuracy and reduce false positives, an enhanced
convolutional neural network (E-CNN) architecture is utilized for tumor classification. The E-CNN architecture
comprises three convolutional layers followed by two fully-connected layers, with each layer’s output being
normalized

However, another approach utilizes a Faster R-CNN model to detect nodules directly from raw CT scans
[43]. It reuses weights from a pre-trained VGG architecture and employs non-maximum suppression to reduce
the number of candidate regions. The object detection network classifies these proposals, and overlapping
candidates are merged based on a close Euclidean distance threshold. Finally, a CNN-based method and a
modified fully-convolutional neural network (FCN) are used to further reduce false positives and perform pixel-
wise segmentation, respectively. This approach achieves an average Dice coefficient of 0.793, a classification
performance measure (CPM) of 0.880, an accuracy of 94.6% with 4 false positives (FPs), and a sensitivity of
95.2% with 19.8 FPs/scan. The Intersection over Union (IoU) is reported as 70.24± 12.04% [43].

One approach to lung nodule segmentation extracts a comprehensive set of features [46]. It analyzes both 2D
and 3D image data, generating thirty-two texture descriptors and twelve geometric properties. These features
are then combined using a two-level union operation, creating a single vector called a hybrid geometric texture
feature (HGTF). To reduce the dimensionality of this complex feature vector, a two-stage stacked autoencoder
is employed. The first autoencoder acts as an encoder, transforming the HGTF vector into a lower-dimensional
representation. This encoded representation is then fed into a second autoencoder for further compression.
Finally, the resulting low-dimensional feature vector is used by a SoftMax classifier to differentiate between
nodules and background tissue. This method achieves promising performance metrics, with a Volume of Inter-
est (VoI) of 1.97, Probabilistic Rand Index (PRI) of 0.92, and Jaccard similarity coefficient of 0.90.

5.2.3 Data Augmentation

To address class imbalance and improve model robustness, data augmentation techniques artificially expand the
training dataset. This is achieved by applying various transformations to existing images [44]. Common tech-
niques include adding noise (e.g., Salt and Pepper [63], Gaussian, Perlin) to enhance model generalizability.
Geometric transformations like random rotation, cropping, flipping (both 2D and 3D), scaling [64], and transla-
tion further enrich the dataset [47, 49, 54, 57]. Additionally, techniques like blurring, swapping image patches,
and random voxel translations in 3D data can be employed. Figure 5 showcases examples of pulmonary nod-
ule detection using Computer-Aided Detection (CAD) after applying data augmentation. Notably, Regions of
Interest (ROIs) can also be randomly shifted along the x, y, and z axes to simulate real-world variations [65].
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Figure 5: Lung CT images; (a) CT scan slice of lung (b) After pre-processing (c) presence of blood vessels and
other artifacts in CT image (d) 3D image of a nodule [78] (e) 3D voxel [65] (f) a TP nodule (g)a FP nodule (h)a
benign nodule (i) a malignant nodule

6 DNNs: Revolutionizing lung cancer detection and diagnosis

Further, the next step is to predict the lung cancer. Early-stage lung cancer is often asymptomatic, making
detection challenging. DNNs hold immense promise for identifying early signs of the disease, leading to better
patient outcomes and improved survival rates. In the following sub-section, the models are classified broadly
in two categories based on the nodule detection and malignancy classification tasks.

6.1 Deep Learning for Lung Nodule Detection

Traditionally, radiologists have relied on their expertise to identify nodules during CT scan analysis. However,
this process can be time-consuming and prone to human error, especially with the large number of images often
involved. Deep learning is revolutionizing the way lung nodules are detected in CT scans. These algorithms,
like super-powered pattern recognizers, can analyze vast amounts of image data to find these small shadows
that might be cancerous. This not only helps radiologists by highlighting areas of concern but can also improve
accuracy by identifying subtle abnormalities invisible to the human eye. This subsection categorizes various
research approaches into two main groups: those that rely on 2D input data and those that utilize 3D input data.
The Table 5 show the performance summary of the deep learning based lung nodule detection approaches.

6.1.1 2D deep learning approaches

A method [66] detects lung nodules using a Euclidean distance-based depth map. In this lungs are segmented
using region growing, thresholding, and morphological operations. Further, a rule-based classifier reduces the
false-positive nodules that exclude non-nodule candidates using the following features major axis length, minor
axis length, volume, area, and spherical disproportion. And three 2D CNN networks each for the coronal, axial,
and sagittal view whose outputs are fused with the logical-OR operation to classify nodules.

A DNN-based Faster R-CNN is proposed to detect nodules [67]. Different anchor sizes are designed: 12*12,
18*18, 27*27, 36*36, 51*51, 75*75 and 120*120 to propose nodule regions. VGG16 is the feature extraction
model. A score is assigned to every proposed region and then classified. A boosting architecture of 2D CNN
reduces false positives. Using three weak classifiers, and then majority voting to give the final classification
result. The proposed model has a CPM of 0.790, which is comparatively less.

Author develops a method to segment the lung parenchyma and thus eliminated the vessels [56]. The vascular
structures are eliminated using multi-scale Farangi filter. They normalized the dataset using object centraliza-
tion concept. A four-channel CNN network, each taking different sizes of patches as input, was then used to
detect the nodules. Model has sensitivity of 94% at 15.1 FPs/scan and 90.13% at 11.3 FPs/scan.
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Ref ID Datasets Sample size Methods Performance (%) Nodule category Limitations & Research Gaps
[66] LIDC 650 scans or 829

nodules
rule-based classifier, multi-view CNN,
2D

Acc 89.895, Sen 85.256, SP
90.658

nodule, non-nodule instead of multi-view 3D images of nod-
ule can capture more features.

[67] LUNA16 888 scans Faster-RCNN, VGG16, Boosting archi-
tecture of 2D CNN, 2D

Sen 86.42 nodule or non-nodule fusing more context information about
the nodules, such as the connections
with the surrounding blood vessels, and
the information about the patient such as
the medical history report can also be an-
alyzed in the automated diagnosis sys-
tems.

[56] LIDC-IDRI 1006 cases four channel CNN model, Frangi filter,
2D

Sen 80.06 nodule, non-nodule 2D processing was used, 3D processing
would reflect whole information of the
nodule.

[47] LIDC-IDRI 1375 benign 930
malignant, 1380
uncertain

GAN, Encoder, Threshold probability
map, 2D

Acc 95.32, Sen 94.15, SP
90.78

anomalous and normal uncertain nodules are rejected. The
method requires estimating malignancy
scoring threshold. The model is trained
only on the benign nodules.

[8] lung cancer,
breast cancer,
leukaemia

32+34+699 records recurrent neural network, Levenberg
Marquardt, glow-worm swarm opti-
mization, 2D

Acc 98 , Sen 96, SP 95 NI insufficient data

[68] private 500 CT Wavelet dynamic analysis, K-means
clustering, genetic algorithm, 2D

NI model ability to detect all types of nod-
ules is limited.

[49] LIDC-IDRI 1250 nodules 50-layer ResNet, Siamese network,
CNN, 2D

Acc 93.5, Sen 93, SP 89.4 NI the correlations between benign-
malignancy with different attributes
solely or different combinations of
attributes.

[44] LIDC NI hybrid ensemble CNN, 2D Acc 98, Sen 93.5 suspicious nodule, FP robustness to diverse lung nodule size is
missing.

[18] LUNA16 1186 nodules U-Net, Proposed dual pooling, ensemble
learning, 3D

Sen ≥ 90 true, false nodule detects the presence of nodule. The pro-
posed methodology has low CPM score
of 0.911. Malignancy attributes could
have helped in better detection of nod-
ules.

[69] LIDC-IDRI 1186 nodules U-Net, VGG-Net, MIP images (1, 5, 10,
15)mm, 3D

Sen 92.7 nodule, non-nodule MIP images may not accurately depict
the 3D relationships. Calcifications in
vessel walls are problem in MIP. MIP
images cannot be trusted alone for eval-
uation.

[70] LUNA16, Kag-
gle DSB

2101 patients FCNN in V-Net, 3D Sen 92 Nodule, non-nodule,
benign, malignant

lack of large nodules during training. If a
malignant lesion is missed by the CADe
model, the subsequent CADx model has
no way of classifying that scan as malig-
nant, resulting in the biggest source of
false negatives.

[71] LUNA16, Ali
Tianchi

1,888 CT scans or
326570 slices

CNN, ensemble learning, RT-ReLU, 3D Sen 88.3 true nodule, false posi-
tive nodule

high false positive rate makes the model
inefficient.

[72] LUNA16 1186 nodule 3D CNN, FCN Sen 98 NI robustness to diverse nodule types miss-
ing.

[74] LIDC-IDRI 219522 slices PSO-based CNN, 3D Acc 97.62, Sen 92.2, SP 98.64 nodules, non-nodules evaluated on only single dataset
[65] LUNA16 1186 nodules CNN, cube clustering, 3D Sen 87.94 nodule, other tissue pure ground glass nodules are missed

FCNN: Fully Convolutional Neural Network, RT-ReLU: Random translation Rectified Linear Unit, PSO: Particle swarm optimization, NI: Not informed.

Table 5: Performance of nodule detection models

A study [68] shows that a CNN optimized by genetic algorithm performs better than the traditional CNN
to detect and classify pulmonary nodule images. In [8] optimized the parameters of recurrent neural network
(with Levenberg Marquardt model) by glowworm swarm optimization. The RMSE value of their proposed
RNN-GSO is 0.36.

In the clinical diagnosis, the radiologists come across more benign cases compared to malignant. So, a
model trained only with benign cases and validated on malignant cases may be useful at the clinical diagnosis
level. Thus, an encoder based unsupervised multi-discriminator GAN trains the network to learn features of
anomalous benign images [47]. Further tests the network using non-anomalous malignant images. However,
the uncertain nodules are neglected in this work and the method requires estimating the malignancy scoring
threshold.

Further, many researchers in their dataset sampling do not consider the nodules having label ’3’ malig-
nancy because they are difficult to classify. Authors [49] addressed this difficulty. To correctly classify the
marginal nodules, considers two weight-shared networks (Siamese): regression and classification module. The
regression module outputs nodule attributes scores and classification module predicts malignancy labels. While
training both the networks reflect the loss.

For addressing the problem of variations in CT acquisition, an ensemble of VGG, DenseNet, and ResNet is
used to reduce false-positive nodules [44]. In this a physics-based data augmentation technique (PBDA) on two
factors: slice thickness and patients’ dose during CT scans is introduced. In PBDA, the average of the group
of that continuous slice is taken instead of taking each slice. And the number of photons was set to match the
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noise intensity, and Bowtie filter thickness to calculate per-patient attenuation.

2D approaches struggle to capture depth and spatial relationships inherent in 3D data. It can be difficult to
understand why a model makes a particular prediction, hindering interpretability and debugging.

6.1.2 3D Deep Learning Approaches

To prevail over the weakness of 2D image constraints, various 3D image based novel algorithms has been
evolved.

A scheme suggested a two-stage detection method [18]. In the first stage, preliminary nodules are detected
by a new sampling strategy with an improved U-Net based segmentation approach. The second stage proposes
a random mask approach for data augmentation and dual pooling. The dual pooling merged the central pooling
to preserve features from the center and central cropping to get multi-scale features from the patch. The 3D
dual pooling SeResNet, DenseNet, and IncepNet architectures individually predict malignancy probability of a
nodule. The final prediction result is the average of the outputs. The proposed methodology has a CPM score
of 0.911.

Following method [69] resizes each image to a 1mm slice spacing in the z-direction using maximum in-
tensity projection (MIP). They merged outputs from four U-Net architectures using contour retrieval mode
and approximation method. An ensemble of two 3D CNN VGGNet, took 16 and 32 pixels cube as input. A
weighted linear combination, fused the output probability. However, MIP images may not accurately depict
the 3D relationships because calcification in vessel walls may appear as nodules. Also, MIP images cannot be
trusted alone for evaluation.

Method proposed in [70] can both detect and diagnose the components. CADe has a 3D segmentation
network that labels every voxel with nodule probability. A 3D scoring network estimates nodule probability.
CADx ranks each nodule according to its malignancy and provide a probabilistic malignancy score for each CT
scan. However, suppose the CADe model misses a malignant lesion. In that case, the subsequent CADx model
has no way of classifying that scan as malignant, resulting in the most significant source of false negatives.

Radiologists vary in their perspectives during nodule detection. So, authors [71] suggested an amalga-
mated CNN where they used three CNN architectures, which take different scales (32*32*32 with five lay-
ers, 64*64*64-with seven layers, 96*96*96-with 9 layers) of segmented images as input. Further random
translation-ReLU and AdaBoost is used to fuse the results. Then multiple different CNNs learn more non-
nodular structures. However, they did not consider nodules less than 5mm for training. With 8 FPs/scan,
sensitivity is 91.4%.

Moreover [72] detected lung nodules by a 3D fully convolutional neural (FCN) network. To reduce the false
positives, the voxels output from FCN applied a 3D non-maximum suppression operation, thresholding, and
finally averaged the score of classifiers.

There are many hyperparameters used in CNN training [73], and it may directly affect the model accuracy.
A CNN-based PSO [74] optimizes the following hyperparameters: number of filters in the convolutional layers,
number of neurons in the hidden layer, size of trainable filters, type of pooling, number of batches in training,
and probabilities of dropout regularization in convolutional and fully connected layers. However, they have just
optimized the CNN parameters, and nothing specific is in the model that would characterize a lung nodule, for
example, attributes malignancy.

Moreover a method detects nodules by extracting multi-scale cubes and then cluster it with density-based
spatial clustering of applications with noise (DBSCAN) [65]. The advantage is that the model can choose
the best scale combination from multi-scale according to the need. The CPM score of the model is 0.7967.
However, a particular type of nodule, pure ground-glass nodules, are missed by this approach because of no
solid components present in it.
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6.2 Discerning Danger: Classifying Benign and Malignant Nodules

Not all nodules are created equal! Doctors face the challenge of discerning between benign and malignant
nodules. This involves a careful analysis of factors like size, shape, and internal characteristics. Through
imaging tests and potentially biopsies, they can classify the nodule. This distinction is crucial, as benign nodules
are typically harmless, while malignant ones may signal cancer. Early and accurate classification paves the way
for appropriate treatment, making a world of difference in patient outcomes. This subsection examines how
different malignancy classification techniques are chosen depending on the amount of information available
from the patient (2-dimensional vs. 3-dimensional). The Table 6 show the performance summary of the deep
learning based malignancy classification approaches.

6.2.1 2D Classification Techniques

There are some works that consider handcrafted features with in-depth features. The study in [54] compara-
tively studies the traditional methods and CNN techniques. In traditional methods, Daubechies filters extracts
texture, density, and morphological features. SVM (Support Vector Machines) classifier classifies the nodules.
It achieved a low accuracy of 77.5%. Using GANs, and the eight layered CNN architecture shows better accu-
racy 93.9%, and ROC of 0.934. In [75], VGG-Net-f CNN architecture, has only one ReLU layer, dense layer,
max-pooling layer, and classification layer. It used externally extracted features: solidity, circularity, discrete
fourier transformation of radial length function, histogram of oriented gradients and second-order moments of
the image. The model achieved a precision of 95.26%.

The optimization algorithms are well-known to ease the learning task. In [58], the authors used the VGG19
network for image segmentation. Then using a hybrid intelligent spiral optimization-based generalized rough
set approach, reduced fifty features to fourteen useful features. Then using boosting ensemble classifiers and
IDNN (Improved deep neural network), classifies the cancerous features. The model shows a precision of 0.913
and F-measure of 0.921.

With the ideology to develop a model that could show good performance for small datasets, authors in [48],
designed two different architectural models, the Multi-Channels-Multi-Slices-2D-CNN (MCMS-2D-CNN) and
Voxel-level-1D CNN (V-1D CNN) model. Trains the network on only 18 benign and 49 malignant nodules.
In MCMS-2D-CNN, there is one specific channel that takes a raw image as input. Then more channels with
LBP features, gradient features and HOG features are added depending on the criteria that it helps to improve
accuracy. The V-1D CNN has two convolutions, two pooling, and one global average pooling layer. Then
a voting algorithm is used to classify the nodules as benign or malignant. But because of the unbalanced
dataset the V-1D CNN shows Acc of only 0.78, Sen of 0.8, SP of 0.53 and AUC of 0.71. The model shows an
insufficient learning. The performance of MCMS-2D-CNN is shown in Table 6.

A different scheme uses meta-learning method, where the output of the primary learners is input dataset to the
secondary learners [76]. The eight variants of CNN, namely AgileNet, AlexNet, CifarNet, Transfer AlexNet,
Transfer CifarNet, GoogLeNet, ResNet and Inception ResNet extract features and predicts the malignancy value
for each patch. The predicted values for each patch are then used as a new dataset for the following ten ensemble
learners VOT (majority voting), AVE (averaging), KNN (K-nearest neighbour), SVM, NB (Naive Bayes), DT
(Decision Trees), MLP (Multi-layer perceptron), RF (Random Forest), GBRT (Gradient Boosting Regression
Trees), and AdaBoost (Adaptive Boosting). With the above approach following limitations exists: (i) training
time might be longer because of ensemble learners, (ii) multi-scale feature may have better performance than
multiple learners, (iii) The diversity of single primary learners is not considered, and all are from deep CNNs.

Lakshmanprabhu et al. [77] presented an optimal DNN based technique. Texture and Wavelet-based features
are directly extracted. Features dimension were reduced using LDA (Linear discriminate analysis). The model
was then optimized with Modified gravitational search algorithm (MGSA). Though accuracy of this technique
is dependent on traditional image preprocessing pipeline.

The paper [64] suggested a multi-view knowledge-based semi-supervised adversarial classification model.
It is the extension of the work proposed in [78]. The network uses semi-supervised reconstruction network
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Ref ID Datasets Sample size Methods Performance (%) Nodule category Limitations & Research Gaps
[54] LIDC-IDRI 1704 M, 1840 non-

cancerous
CNN, GAN, 2D Acc 93.9, Sen 93.4, SP

93
non-cancerous, be-
nign, malignant

low performance

[75] Emphysema Database,
ELCAP

124 and 180 slices respec-
tively

external feature extraction, CNN,
2D

Sen 69.56 various groups in the
database

used data is too small containing a
low number of nodules.

[58] Cancer imaging archive 5043 CT images IDNN, intelligent spiral model Acc 92.1, Sen 92.3 cancer, non-cancer high processing time
[48] pathological dataset

(D2:lung nodules)
D2:67 nodules multi-channel, multi-slice 2D-CNN,

2D
Acc 77, Sen 76 , SP 46 B, M the proposed CNN models still

didn’t fully study all the information
from the dataset. Missing slices may
lead to loss of topology information.

[76] LIDC-IDRI 743 nodules Eight deep CNNs, Ten fusion meth-
ods, ensemble learners, 2D

Acc 84, Sen 88.6 B, M training time might be longer be-
cause of ensemble learners. Multi-
scale feature may have better perfor-
mance than multiple learners. 2D
CNNs are employed in the study.
The diversity of single primary
learners is not considered and all are
from deep CNNs.

[77] ELCAP 50 CT scans MGSA, LDA, DNN, 2D Acc 94.56, Sen 96.2, SP
94.2

normal, B, M insufficient data.

[64] LIDC-IDRI, Tianchi,
LUNGx

1301 B, 644 M, 1839 unla-
beled

GAN, Autoencoder, 2D Acc 92.53, Sen 84.94,
SP 96.28

B, M, unlabelled data uncertain nodules(median malig-
nancy level=3) were neglected dur-
ing training process. With the 9
mentioned views they can extract
only few information from 3D to
2D. Instead of OA, HVV and HS the
multi-view slices could be used

[78] LIDC-IDRI, TCIA 1945 nodules MV-KBC, 2D Acc 91.6, Sen 86.52, SP
94

B, M supervised model.

[79] LIDC-IDRI 2669 nodules deep CNN, AdaBoost, GLCM, 2D Acc 89.53, Sen 84.19,
SP 92.02

B, M more processing time.

[80] LIDC 743 nodules or 375 M, 368
B

hybrid CNN of LeNet and AlexNet,
2D

Acc 82.2 B, M three channels of input are homoge-
neous

[81] Integrated lung nodule
database, Kyoto Univer-
sity Hospital

412 B, primary lung cancer
571, metastatic lung cancer
253

CNN, transfer learning, 2D Acc 68 B, primary lung can-
cer, metastatic lung
cancer

ignored all nodule-specific features,
such as nodule size and type, only
investigated the effect of smaller im-
age sizes

[82] LIDC-IDRI, clinical
datasets from TCIA

NI shallow CNN, 3D Sen 80, SP 64 NI did not assess the effect of vari-
ability in CT acquisition parameters
across patients and institutions on
the performance of our models, did
not assess the impact of inter-reader
variability of segmentations

[41] LUNA16, TCIA 1186 nodules 3D CNN Sen 88 patient has cancer or
not

infers the labels for each nodule of
the patient

[83] LIDC 1226 nodules; 431 M, 795 B encoder-decoder structure, manifold
learning, 3D

Acc 90, Sen 81, SP 95 B, M model under performs in terms of
sensitivity.

[84] LIDC-IDRI 554 B, 450 M 3D ResNet-22, multi-stream CNN,
multi-task learning

Acc 93.92, Sen 92.60,
SP 96.25

malignancy, 8 at-
tributes

manually adjust the weight combi-
nation of the multi-task loss function

[57] LUNA16, ANODE09,
SPH6

2361 nodules multi-region proposal network,
Faster-RCNN, mRPN, 3D-DCNN

Acc 98.51, Sen 99.1, SP
94

B, M the performance was relatively less
accurate in detecting micro nodules

[85] LIDC-IDRI 635 B, 510 M CNN, Soft activation mapping, U-
Net, Global maxpooling,3D

Acc 99.13, Sen 97.05,
SP 99.21

NI performance dependent on autoen-
coder part.

[86] LIDC-IDRI 431 M, 795 B 3D CNN, handcrafted features,
SVM, 3D

Acc 88.66, Sen 82.60,
SP 91.95

B, M sensitivity is low.

[45] LUNA16 1004 nodules 3D DPN, HOG, LBP Acc 93.78 B, M evaluation of model on a single met-
ric does not show model efficiency.

[53] LIDC 4,252 annotations 3D CNN, HSCNN Acc 84.2, Sen 70.5, SP
88.9

B, M only 5 malignancy attribute is con-
sidered. Model achieves low accu-
racy(0.842) compared to multi-crop
CNN(0.8714).

[87] LUNA16 1004 nodules (positive:450) 3D contextual and spatial attention,
ensemble of 3D dual path network

Acc 90.24, Sen 92.04 B, M low performance.

[55] LUNA16, DSB 2017 1186 nodules from LUNA,
832 from DSB

modified U-Net, 3DCNN, 3D RPN,
Leaky Noisy-OR method

Acc 81.42 probability of lung
cancer for that subject

growing speed of nodules is not con-
sidered. small nodules detection ac-
curacy is not considered.

[88] LIDC-IDRI, private
hospital

509 M, 635 B supervised: 3D CNN, graph regular-
ized sparse representation; unsuper-
vised: k-means, proportional SVM

Acc 78.06, Sen 77.85 ,
SP 78.28

B, M the average accuracy of the pro-
posed unsupervised model is low
78.06%. The accuracy of the super-
vised model is also low 91.26%. The
unsupervised learning methods like
GANs and autoencoders are promis-
ing

[89] LIDC-IDRI 1018 cases CNN,QIF, Random forest,3D Acc 94.6, Sen 94.8, SP
94.3

nodule, non-nodule or
likely B, likely M

radiomic attributes may improve
performance.

[95] HarvardRT, Radboud,
Moffitt, MUMC, M-
SPORE, Maastro,
RIDER

317+147+307+
200+90+101 +32 pa-
tients

CNN, transfer learning, 3D NI NI the retrospective nature of this study,
the input data space, opaqueness of
deep learning networks

[63] LIDC 1011 nodules 3D-DenseNet-40, 3D-ResNet-50 Acc 91.47, Sen 91.26,
SP 91.67

B, M non-visual attribute labels like age,
gender, genomics data, family his-
tory and histological information
can also be incorporated into net-
work training

[21] LIDC-IDRI, NLST 103 nodules U-net, feature pyramid network,
leaky noisy-OR gate, 3D

Acc 85 B, M features were described and ob-
served by a single reader, The hand-
crafting of the classification patterns
of the activation maps

B: Benign nodule, M: Malignant nodule

Table 6: Performance of malignancy classification models
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trained on labelled and unlabelled data. The features extracted from each convolution and identity blocks of
the encoder are passed through the transition layers to each respective layers of classification network. The
uncertain nodules (median malignancy level=3) are not used during the training process. The multi-view slices
may be a better substitute to OA, HVV, and HS patches.

Taking a similar scheme [78], a 64*64*64 sized voxels, and nine 2D views (coronal, sagittal and axial
views) along the six diagonals of a cube are extracted. The U-Net is used to segment the nodules on each slice.
Further, HVV (heterogeneity in voxel values), OA (Overall appearance), and HS (heterogeneity in shapes) of
each nodule for each view is extracted. OA is extracted from the square-shaped region of interest. HVV is
considered by making non-nodule regions of the OA patch set to 0. HS is extracted by putting nodule regions
of the OA patch as 0. In a pre-trained ResNet-50 model, the last fully-connected layer is replaced by three
fully-connected layers to classify each view as benign or malignant. Further, each of these views’ classification
is combined to give the final output. However, the nine mentioned views, can extract only some information
from a 3D to 2D. Multi-view knowledge-based collaborative (MV-KBC) is a supervised model.

The authors presented a framework based on the information extracted from texture, shape, and deep model
(improved 2D eight-layer DCNN LeNet-5 model) [79]. The weighted sum of likelihood is used to converge
the decisions made from the three classifiers. 697 uncertain nodules were either labelled as benign or labelled
as malignant or discarded. If these are taken as benign then Acc 87.74%, Sen 81.11%, SP 89.67% and AUC
94.45%. If grouped as malignant then Acc 71.93%, Sen 59.22%, SP 84.85% and AUC 81.24%. The perfor-
mance of the model of the discarded group is given in Table 6. In [80] authors designed a robust AgileCNN,
which combines the benefits of LeNet layer settings and AlexNet parameter settings. Since LeNet and AlexNet
are originally designed for coloured images, this affects the performance because the medical images are gray
coloured images. Another similar model [81] used VGG-16, that was pre-trained on IMAGENET dataset. Au-
thors compared their model to the conventional SVM based model. The validation accuracy of the model with
transfer learning is reported as 68.0%, and without transfer learning is 58.9%. The performance of CADx is
somewhat affected by the image size. The larger image size can give better accuracy.

6.2.2 3D Classification Techniques

The difficulty associated with classification of malignant lung nodules is the presence of In [82], authors de-
veloped LungNet, a shallow convolutional neural network. It has two CNNs, the survival prediction and the
malignancy prediction network. Each has three convolutional, one max-pooling, and three fully connected
layers. The weights of the survival prediction network are shared by transfer learning with the malignancy
prediction network. The patients’ clinical variables like age, histology, sex, and cancer stage, along with CT
images, are considered. They demonstrated the use of transfer learning. The model achieves AUC of 0.85,
while without transfer learning AUC of 0.82 is achieved.

Furthermore, a systematic end-to-end pipeline is proposed [41]. First predicts malignancy at nodule level
and then predicts lung cancer at the patient level. They used 3D CNN ResNet50, with and without batch
normalization, respectively, as classifiers.

Another method uses a regularization technique that helps in preserving the information as much as possible
from the original data space [83]. The encoder block encodes the input image, while the decoder network
reconstructs the encoded image. Further, classification task is carried out by the four fully connected layers
using the encoded image. The network optimization loss function contains both the manifold loss and the
classification loss. It is challenging to train the models because much inter-class similarity and intra-class
variations exist in the medical images. Moreover a study explored the internal relationship behind a benign,
malignant and nodule attributes classification in an end-to-end manner [84]. A fine-tune ResNet-22 avoids
the vanishing gradient problem as features from the two-stream CNNs are stacked. A new hyperparameter in
their loss function adjusts the relationship between multi-task classification. Although they manually adjust the
weight combination of multi-task loss function.

Another method used a cloud-based 3D DCNN [57]. Here, Faster-RCNN (Faster-Regional convolutional
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neural network), mRPN (multi-view and multi-scale region proposal network), a VGG-16 model is used. Au-
thors integrate cloud-computing into the CAD system using 12 virtual machines and 24 processing units. Be-
cause of the cloud backend, radiologists can simultaneously get feedback from multiple radiologists in real-
time. However, virtual environments may sometimes lead to inaccuracy. It incurs high performance and low
computational cost. There is the use of MIP images for multi-view extraction. The performance was less
accurate in detecting micro-nodules, whose diameter is less than 3 mm.

A high-level feature enhancement scheme is developed in which U-Net type architecture with three down
sampling and three up sampling layers are applied[85]. By combining one dimensional output from global
MaxPooling (GMP) layer with feature-analysis technique (soft activation mapping, SAM) they extracted high
level features named HESAM. However, the model is dependent on the high-level accuracy from the autoen-
coder part.

There are a few hybrid models proposed for lung cancer diagnosis. Authors [86] discussed the fusion of both
the handcrafted and CNN based features. Texture, intensity, and geometric based 29 features is selected. Radial
basis kernel function (RBF) with support vector machine is used to select the significant features. The paper
[45], used local binary patterns to extract texture features, a histogram of oriented gradients to extract shape
features, and a 3D deep dual-path network (DPN) to extract in-depth features. The proposed DPN has benefits
of both ResNet and DenseNet. Then a Gradient boosting machine algorithm is used to classify the nodules. It
is not fully-automated but a hybrid model.

A systematic three-step hierarchical semantic convolutional neural network (HSCNN) is introduced [53].
The first step, model learns the general features using two 3D convolutional modules. In the next step predicts
the score values for five attributes: texture, margin, sphericity, subtlety, and calcification using two fully con-
nected, two batch normalization and one dropout layers. The third step, the outputs from the first step and the
first fully connected layers of the second step are input to the module. However, only five malignancy tasks are
there. Model achieves low accuracy (0.842) compared to multi-crop CNN (0.8714).

Using further the contextual and spatial attention mechanisms to denote the significance of local properties
for nodule classification [87]. The ensemble of four variants of the CNN framework with weighted voted
averaging, the final classification results are predicted. The result shows an F1 score of 90.45%.

Above mentioned research work detects the nodules present in the CT images. Nevertheless, the mere pres-
ence of nodules does not confirm that patient has cancer. Authors [55] provide a modified U-Net architecture
which selects the five most malicious nodules, and then, using a leaky noisy-OR gate, and combines the cancer
probabilities to obtain the probability of lung cancer for the subject.

A different strategy developed in [88] uses a trace norm regularization and graph structure matrix for reg-
ularization in supervised learning approach. A 3D CNN is used that is pre-trained on sports dataset. It is
multi-task learning on visual attributes. Moreover a better scoring function based on the mean and standard
deviation of the scores is proposed to deal with radiologists’ uncertainty. However the average accuracy of the
proposed model is low 78.06%. Further in the unsupervised learning approach, initial clustering is done on the
appearance features to obtain an initial label. Then, using these labels, compute label proportions correspond-
ing to each cluster. K-means clustering and Proportion-SVM are used for the above. The unsupervised learning
methods like GANs and autoencoders are promising.

A systematic approach [89] for lung cancer diagnosis in which first the detection of candidate nodules, and
then classification according to candidates’ malignancy. Here, two CNN networks take 47*47*5 and 21*21*5
as input. A random forest classifier classifies the images based on fifty radiological quantitative image features
(QIF). Nodule classification was performed separately on the two CNNs with and without QIF features. The
best performance combined with QIF is in Table 6. If it would consider attributes malignancy also then model
performance may have increased. Another qualitative approach adopted in [63] applying a multi-attribute lung
nodule classification network (ALNC) using DenseNet. It is designed to output labels for each attribute and
also classifies it based on malignancy.

In the paper [21], authors used a U-Net encoder-decoder architecture, leaky-noisy OR gate and a 20-layer
deep residual CNN network. The occlusion and saliency maps are used to understand the internal process of
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Ref ID Datasets Sample size Methods Performance (%) Nodule category
[91] clinical dataset 126 patients 3D CapsNet Acc 81.3, Sen 82.2, SP 80.7 adenocarcinoma, squamous cell carcinoma
[90] clinical dataset 1419 samples 10 ML algorithms, VGG16, 2D Acc 84.1, Sen 91.8, SP 80.9 adenocarcinoma, squamous cell carcinoma
[92] clinical dataset 111 patients 2D RDL Acc 91.3, Sen 73.4, SP 96.4 patterns of Adenocarcinoma
[93] NSCLC Radiogenomics 211 patients 2D ensemble CNN, bidirec-

tional RNN
Acc 96.29, Sen 96.09 adenocarcinoma, squamous cell carcinoma

Table 7: Correlative studies of histologic findings with CT findings

malignancy estimation. Using heat maps, they found that heat inside a nodule is generally a malignant feature.
In contrast, peripheral heat, heat in the adjacent plane, and satellite heat were useful to classify nodule as
benign. The model has a 22.2% false-positive rate for fatal cases and an 8% false-positive rate for mild cases.
The probability of lung cancer in patients was predicted by taking the top 5 malignant nodules.

6.3 Bridging the Gap: Correlating CT Scans with Histological Analysis

Researchers developed various DNN models for studying correlation of histologic findings with CT findings.
Authors [90] evaluated VGG16, ten machine learning (ML) algorithms and ten feature selection techniques
for the differentiation of histological subtypes of NSCLC. The ML algorithms used are: Linear discriminant
analysis, support vector machine, Random Forest classifier, AdaBoost, Naive Bayes, Bagging, multi-layer
perceptron and decision tree. The experiments in this paper concluded that VGG16 has outperformed the
conventional ML algorithms with radiomics.

A DNN model based on capsule net for the subtype discrimination of NSCLC is proposed [91]. Another
method combined radiomics with deep learning (RDL) to predict patterns in adenocarcinoma nodules spec-
ifying ground glass opacifications [92]. Results showed radiomics combined with deep learning has better
performance compared to radiomics alone. Furthermore a hybrid of convolutional and bidirectional recurrent
neural network is introduced to detect NSCLC [93]. They ensembled and then averaged the best 10 models.
The results of ensembled model were better than the single model. Table 7 shows the brief summary of the
described papers.

7 Discussion and Future Directions

A total of 52 articles that are published in well-known journals, are focused in this review. This review work
focuses on methodology for training and validation. Deep learning’s ability to learn from data has revolution-
ized diagnostics, achieving unmatched accuracy over traditional methods. While integrating DNN technology
into medical practice offers exciting possibilities, it also presents significant challenges. We will explore both
aspects below.

7.1 Eliminating Bias: Ensuring Fair and Accurate Data

From the analysis, we see that most of the studies (a total of 38 selected articles) have used LIDC-IDRI and
LUNA16 datasets, while some have used clinical based private datasets, which are not available publicly and
thus restricts the research process [48, 58, 68, 41, 55, 57, 82, 21, 71, 88, 95].

The performance of models that are trained and tested on only LIDC-IDRI dataset: Lei2020 has highest
accuracy of 99.13%, sensitivity of 97.05% and specificity of 99.21%. Here the formed four categories of
dataset. These datasets differed in, what kind of information each contained. Like one category ignored the
edge variations while the other contains shape variations and multi-scale information. But here it should be
noted that uncertain nodes were removed from the training and testing set. One of the possible reasons for the
low sensitivity of work published [85] is that all the nodules with average malignancy score of 3 are considered
to be benign. [74] shows good performance in the detection of nodules. [84, 47, 54, 49] have low performance
on all the metrics.
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The datasets have to be appropriately annotated by the well-experienced radiologists. If it is clinical data, we
see that very few radiologists annotate it, and in some data collected, the researchers themselves annotate these
data and prepare the ground truth themselves. The researchers compared to radiologists, have less experience
regarding the CT scans. So, their segmentation of nodules is prone to errors.

Though a substantial amount of data is available in these datasets, there is still a need for the variability in
nodules shape, structure, and dimensions. Some of the studies use GAN, augmentation-based techniques to
bring balance in the datasets. Studies validated with less image data are [94, 48, 77, 21]. For better generaliza-
tion, the models must be trained and tested on different datasets available from various geographical locations.
Better algorithms are still needed to deal with missing, unlabelled, ambiguous IDs, and noisy data [96].

7.2 Role of 2D and 3D Imaging in Early Detection

Owing to 3D nature of CT scans, 3D models are more appropriate than their 2D counterparts. In 3D model
the inter channel correlation is exploited to refine the extraction of spectral data while in a 2D model only
spatial correlation of the channels in the image are considered to obtain spectral data. In addition to volume,
3D medical imaging provides a clearer picture of blood vessels and crisper images of bones. 3D models can
efficiently extract spatial information due to 3D-based convolution and pooling functions. More remarkably,
training a 3D model from scratch may not certainly give better performance than transfer learning, fine-tuned
from natural image or video to medical image in 2D.

Figure 6 illustrates the comparative view in terms of accuracy and sensitivity of the methodologies used in
2D based models and 3D based models. Only those methodologies are represented in the graph whose both
accuracy and sensitivity are provided in the respective papers. From Figure 6 2D models, it is visible that the
best accuracy of 98% is achieved by two methodologies, that is RNN GSO (Recurrent neural network glow-
worm swarm optimization) [8] and hybrid ensemble CNN [44]. But hybrid ensemble CNN has less sensitivity
of 93.5% while RNN GSO has sensitivity of 96%. So, we can conclude that RNN GSO achieves the better
accuracy and sensitivity. However, RNN GSO is trained on small lung cancer dataset having 32 records. While
ensemble CNN is trained on LIDC-IDRI dataset.

Figure 6: Accuracy and sensitivity of the reviewed methods

From Figure 6 3D models, it is visible that the methodologies Faster-RCNN, mRPN, DCNN [57] and Soft ac-
tivation mapping (SAM), U-Net, CNN [85] achieves better accuracy and sensitivity compared to other method-
ologies. However, FP/scan is 2.1 which is high. Further, MIP images are used but the good thing is that it is
tested on three different datasets. The methodologies that have comparatively performed poor are CNN, graph
regularized sparse representation [88] and HSCNN [53]. The HSCNN has low sensitivity of 70.5% and CNN,
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graph regularized sparse representation has low accuracy of 78.06%. The objective of this paper [88] is to show
the efficiency of supervised and unsupervised techniques.

Although it is difficult to say which methodology is best among all, but still from Figure 6 it can be said that
optimization techniques, hybrid ensemble techniques, evaluation based on multiple regions and SAM are the
ones which have shown good results.

7.3 Integration of Supervised and Unsupervised Learning

During the study, we found that few work uses unsupervised techniques. Some have utilized the benefits of both
unsupervised and supervised techniques [64]. Though unsupervised models are computationally complex, but
for medical images where annotation of data is less available and background of the images are highly similar
then, both the supervised and unsupervised techniques in the model might help improve sensitivity. Instead of
discarding nodules with average malignancy label ’3’ and thus losing some amount of information, the features
in this can be learnt from unsupervised techniques. There is many work [18, 58] that are supervised techniques
based. Work [47, 64, 65, 88] have both supervised and unsupervised methods.

7.4 Advantages and Limitations of DNN

Table 5 and Table 6 provides a concise comparative analysis of the techniques reviewed in this work. The
highest sensitivity and accuracy achieved by a 2D segmentation task model is 99.43% and 99.66% [4]. While
for cancer classification task [59] has highest accuracy of 96.67%. Most of the reviewed 3D models can achieve
more than 90% accuracy. Among 3D models, the work [85] achieves the highest accuracy of 99.13%, the
sensitivity of 97.05%, and specificity of 99.21%. The work in [46, 85, 57, 4, 8, 77] has sensitivities higher than
95%, which means that these models can better detect malignant nodules. Studies [63, 74, 49, 58, 4] having
Acc more than 90% [54, 47, 59, 8, 64, 62, 77, 43, 78, 46, 85, 57, 83, 84, 87, 45, 89].

Over the years the accuracy of the models has increased. The low sensitivity of 69.56% is because of
different dataset used. The method is based on both deep and external features. The highest AUC achieved
is 98.4%. the work shows better detection of nodules. The same methodology achieves AUC of 94.3% when
deals with malignancy classification tasks. Minimum AUC is 66%, the aim of this paper has been to deal with
small pathological datasets. Adopting ensemble techniques for classification tasks such as a four-channel CNN
has been proposed, which shows better performance than a single classifier. Machine learning-based classifiers
are there in proposed hybrid schemes, but instead of using handcrafted features, the features extracted from
multiple CNN models are the input.

GANs are used to generate augmented 2D images [47, 54, 64, 59]; further, it can thus, produce 3D volumes
of images using these 2D continuous images. Following studies [64, 46, 83] have used autoencoders. The
highest accuracy achieved in the malignancy classification tasks is 94.6% while in detection tasks is 98.51%.
Further researchers may consider these techniques in order to achieve the next level of progress in lung cancer
diagnosis based on CT images.

7.5 Challenges Associated with Evaluation of Nodule Attributes

Few studies [49, 41, 42, 53, 88, 74, 63] have considered the radiologists annotated attribute scores as an essen-
tial criterion for classification. Each attribute focus on specific details of a nodule. The qualitative semantic
information of a nodule like ”highly spiculated”, ”lobulation index”, ”calcification index”, ”moderate hetero-
geneity” is captured. Some architectures predict the malignancy scores for each attribute and thus helps in
improving the malignancy classification tasks. The benefits of such design are that gradients from semantic
label prediction can also improve the detection and classification task. The purpose behind this is to improve
the accuracy and consistency of medical image diagnosis through computational support. The work [85] rank
malignancy attributes and choose only best ones to train their model. However, DNNs hold immense promise
for the future of lung cancer detection and diagnosis.
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8 Conclusion

This review analyzed 52 recent research papers on Deep Neural Network (DNN) methods for lung cancer diag-
nosis on chest CT scans. The studies explored nodule segmentation, detection, and malignancy classification.
Key details like CT imaging characteristics, datasets, data pre-processing, and augmentation techniques were
examined. The review categorized the methods based on tasks (nodule detection vs. malignancy classification)
and input dimensions (2D or 3D). Reported accuracies were high, with nodule detection reaching 98% [8] and
malignancy classification reaching 99.13% [85]. Advantages and limitations of different approaches were also
discussed.

While significant progress has been made in automated lung cancer diagnosis using DNNs, particularly
CNNs and their variants, there’s room for improvement. The review suggests exploring emerging machine
learning algorithms like reinforcement learning. These algorithms can incorporate cognitive decision-making
alongside learned knowledge, potentially leading to the next level of computer-aided lung cancer diagnosis.
The reviewed methods provide valuable insights for researchers aiming to improve early lung cancer detection.
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