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Abstract

Confocal microscope images are wide useful in medical diagnosis and research. The automatic interpreta-
tion of this type of images is very important but it is a challenging endeavor in image processing area, since
these images are heavily contaminated with noise, have low contrast and low resolution. This work deals
with the problem of analyzing the penetration velocity of a chemotherapy drug in an ocular tumor called
retinoblastoma. The primary retinoblastoma cells cultures are exposed to topotecan drug and the penetra-
tion evolution is documented by producing sequences of microscopy images. It is possible to quantify the
penetration rate of topotecan drug because it produces fluorescence emission by laser excitation which is
captured by the camera. In order to estimate the topotecan penetration time in the whole retinoblastoma
cell culture, a procedure based on an active contour detection algorithm, a neural network classifier and a
statistical model and its validation, is proposed. This new inference model allows to estimate the penetration
time. Results show that the penetration mean time strongly depends on tumorsphere size and on chemothera-
peutic treatment that the patient has previously received.
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1 Introduction

Automatic interpretation of microscopy images is a challenge in the area of image processing because they
are contaminated with noise, they have low contrast and low resolution. This type of images is wide useful in
medicine studies for researching in different diseases and drugs.

Retinoblastoma is the most frequent ocular tumor in childhood, characterized by malignant cells in the
retina. One of the treatments used in retinoblastoma fighting is topotecan drug [18, 23]. The objective of this
work is the automatic interpretation of microscopy image sequences and to propose a series of standard steps for
analyzing this type of images by using active contours and machine learning techniques for image segmentation
and classification, respectively. The advantage of topotecan drug is that its penetration can be quantified through
its fluorescence emission by laser excitation [18]. The images were taken at Prof. Dr. Juan Pedro Garrahan
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Hospital, Buenos Aires by expert professionals. The microscope used is Olympus Fluoview FV1000 confocal
laser scanning microscope (Olympus, Tokyio, Japan) with imaging software (Olympus Fluoview FV10-ASW
v1.7c) and equipped with a UPlanSApo 20X / 0.75 NA objective, for more information see [2].

Several authors have studied retinal diseases by means of medical images analysis and statistical modeling.
In [19] a study of tumor classification using 395 fundus images is presented. In this article, the authors
construct a probabilistic framework for retinal diseases diagnosis, with information that they obtain by capturing
historical knowledge of retinal pathologies, from a bank of fundus image. Other authors [3, 21] have explored
automatic techniques of pathology tracking by means of image analysis. In [17] a work focused on retinoblas-
toma detection by using image processing, is exposed. The authors perform a review of image segmentation and
classification methods, all of them applied to retinal images. An additional method is presented in [24] where
a vessel segmentation procedure with application to retinal disease study, using active contours, is introduced.
Although all these works dealt on experiments performed on retinal images, as far as we are aware of, until now,
none had been performed on tumor cells microscope images. In [4], a prediction of retinoblastoma presence
using convolutional neural networks (CNN), is presented. In [22] the authors contribute to the understanding of
retinal tumor cells by producing tridimensional retinoblastoma cultures as vitreous seeds models for live-cell
imaging of chemotherapy penetration. In [2] an assessment of topotecan penetration time in tumorspheres was
carried out by means of a statistical model, but the results were ambiguous. Further improving on those ideas,
in this paper we focus on image sequence analysis and preprocessing techniques combined with data analysis,
in order to characterize the dynamics of topotecan penetration in tumor cell clusters. In this article, the penetra-
tion percentage for each given time is computed more accurately using image segmentation techniques based
on morphological geodesic active contours and a machine learning classification.

The images utilized in this study, derive from an experiment from which its biological procedure is explained
in [22]. The microscopy images of these cell cultures belong to two patients, each one of a different kind:
Patient 1, the patient was enucleated in the first line of treatment without having previously received chemotherapy.
Patient 2, the patient had received chemotherapy prior to the enucleation of the affected eye. The acquisition of
primary cultures from tumor cells is an important challenge due to stringent growth and maintenance conditions.
The cell cultures used in this work are unique in Argentina [22].

According to [22], cell cultures are exposed to 1 microliter of a 10 µg/ml solution of topotecan and observed
in light gray microscope photos. Finally, an expert takes pictures of the evolution of the drug at regular time
intervals. The penetration time of the drug in the tumorsphere is expected to be predicted according to the
fluorescence evolution over time by measuring it using image segmentation, statistical inference and machine
learning methods. A better understanding of the Topotecan penetration dynamics in Retinoblastoma could help
to devise more precise dosage as well as timing constraints of the administering procedure.

These cell cultures, to which we refer to as tumorspheres, are classified by visual inspection, according
to their size, into three categories: small, medium and large. Figure 1 shows an example of a sequence of
microscopy images corresponding to a large size tumorsphere from Patient 1. It can be observed that gray
levels of pixels become brighter as time passes by. As topotecan penetrates the cell, it takes on brighter gray
levels.

The objectives of this work are: In first place, the automatic interpretation of the image sequences and then,
build a model to automatically estimate the time that topotecan consumes in penetrating the whole tumorsphere.
The tumorsphere is considered to have been totally penetrated when it has a homogeneous color in the central
region. Compare the penetration rate of topotecan between types of tumorspheres from Patient 1 and Patient 2.
Compare the penetration rate of topotecan between different sizes of tumorspheres, derived from the same
patient.

This article unfolds as follows. In Section 2, the image processing techniques to segment the microscopy
image and the neural network based classification method, are described. Section 3 shows the model to
estimate the topotecan penetration time. Section 4 presents the results of applying the image segmentation
and classification methods and the validation of the statistical analysis. Lastly, in Section 5, final remarks are
exhibited.



Hurovitz et al. / Electronic Letters on Computer Vision and Image Analysis 21(1):47-58, 2022 49

(a) Time 0 s (b) Time 30 s (c) Time 60 s

(d) Time 90 s (e) Time 120 s (f) Time 150 s

Figure 1: Sequence of microscopy images taken at 30 seconds intervals, corresponding to a large size
tumorsphere from Patient 1.

2 Object Detection and Pixel Classification

The microscopy images are contaminated with noise which can be observed as a granulation. Figure 1 shows
an example of an image sequence where none image improvement technique was applied. Noise confuses
automatic methods of image interpretation and it is necessary to eliminate it before starting the analysis. A
method of noise removal with edge preservation called Bilateral Filter [20] is applied, because it balances noise
reduction and edge preservation against low computational cost [9].

As the underlying objective is to evaluate the topotecan penetration dynamics in the tumorsphere, it is
relevant to identify with high precision the pixels that belong to the cell. Hence, this implies recognizing
as accurate as possible the tumorsphere contour. Then, the pixels inside the contour are considered. There
are many different approaches for object segmentation in medical images. One of them is manual delimitation
but it is time-consuming, tedious and the results can be subjective and non-repeatable. On the other hand,
fully automatic methods require a prior object shape knowledge, which is not usually available in medical
images. Halfway of these opposite ends, semiautomatic methods provide a balance between good results
and low user intervention. The image segmentation methods based on active contours belong to the latter
class [16, 15]. These type of algorithms begin with an initial curve provided by the user, which evolves to fit
the edge of the object of interest. Geodesic active contours is an example of this type of algorithms [1, 8],
based on the computation of the minimal length curve. This method has the property of being more accurate
at contour fitting than other methods based on curve evolution, though it carries a higher computational cost.
In [14] a formal approach for stable and fast contour evolution is provided by using morphological operators
combined with geodesic active contours, called Morphological Geodesic Active Contour (MGAC) method.
This implementation is easier since it does not require the use of sophisticated numerical algorithms and provide
almost the same solution that geodesic active contours and, according to authors, it offers advantages in terms
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of speed and stability.
In this case, as the topotecan drug spreads across the culture, precision in fitting the object contour is

essential. In [2], an active contours method based on pixels interchange between two lists of neighbor pixels
was used for tumorsphere segmentation. This method is very fast but the contour fitting was not accurate in
some images and therefore ambiguous results were obtained. The lack of good results was found to be the high
contrast inside the tumorsphere. For this reason, the MGAC algorithm being more stable, is a good alternative
solution.

Figure 2 shows the result of applying the MGAC method to the first image of a sequence of a retinoblastoma
cluster. Figure 2a shows the initial curve, a polygonal given by the user in a roughly way. Figure 2b shows the
result of applying the MGAC method, and the segmented results is depicted on Figure 2c. It can be observed
the precision of the contour finding method.

(a) Initial curve (b) Final Curve (c) Segmented Result

Figure 2: Result of applying the MGAC method to a retinoblastoma cell cluster image.

Once the pixels belonging to the tumorsphere have been found, it is necessary to classify them into two
levels, assigning to each pixel the Y ES or the NO labels, where the first indicates topotecan presence. Hence,
from the classification, the percentage of topotecan penetration into the tumorsphere can be calculated.

Supervised learning classification methods are based on a labeled training set, that provides classes informa-
tion. In this way, it is possible to classify a testing set by the labeled information acquired from a previous
training set. Convolutional neural networks (CNN) belong to this kind of methods [13]. However, in this case,
the true classification of the pixels is unknown, there is no labeled training set, and it cannot even be obtained
by an expert. In order to properly classify the pixels without prior information, we utilize the method presented
in [11]. In contrast, this algorithm is an unsupervised image classification method based on convolutional
neural networks. It is a combination between label prediction and network parameter learning. The authors
demonstrated that this method is more efficient that k-means [12] and graph-based [5] classification methods.
Once the classification is performed in the whole sequence, it is possible to compute the percentage of white
pixels, and in consequence, the percentage of topotecan cell penetration. Figure 3 shows the pipeline of the
whole process.

Percentage ComputationClassificationObject SegmentationObject Detection

Figure 3: Scheme of the proposed process.
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3 Penetration time estimation with qualitative predictors

In this section, we compute a linear model with qualitative predictors with three levels, to estimate the time it
takes for the topotecan to reach the total penetration. In order to build a model for topotecan penetration time
estimation by comparing medium and small sizes with large size, the following model is used,

T p = βp0 + βp1X
p
1 + βp2X

p
2 + ε (1)

where p = {1, 2} correspond to Patient 1 and Patient 2, respectively. The dummy variables are

Xp
1 =

{
1 if Size =M
0 if Size 6=M

(2)

and

Xp
2 =

{
1 if Size = S
0 if Size 6= S

(3)

where M and S are medium and small sizes, respectively.
The models are validated following the recommendations by [10]. We compute R2 error and Adjusted R2

error (see [7]), which provide a measure of lack of fit of the model. They range between 0 and 1, where 1
indicates a perfect fit. And the t- Student test, with a significance level η = 0.05:

H0 : βi = 0, i = 0, 1, 2
Ha : βi 6= 0 i = 0, 1, 2

The Fisher test (see [6]) with a significance level η = 0.05:

H0 : β0 = β1 = β2 = 0
Ha : ∃βi 6= 0 i ∈ {0, 1, 2}

In Section 4 the results of validation are presented.

4 Results

Table 1 shows the average number of pixels that small, medium and large size tumorspheres possess, respectively.

Table 1: Pixel average number for each tumorsphere size.

S M L
Number of Pixels 110619 162062 339129

Figure 4 shows the result of applying the proposed method to the sequence of Figure 1, using two clusters.
It can be observed that the zones that inside/outside regions of the tumorsphere are clearly identified and that
the bright zone (topotecan) increases as time passes.

The percentage of topotecan penetration inside the cell is computed by measuring the percentage of white
pixels inside the cell. This is presented in Table 2 showing the results of applying this idea to the image
sequence of Figure 1.

Table 3 shows the mean penetration rate for each type of cell at 60 seconds. It can be observed that as
cell size increases, average penetration rate decreases. In addition, tumorspheres from Patient 2 have a lower
average penetration rate.

Figure 5 shows the variation of topotecan penetration rate, depending on the exposure time in conjunction
with a polynomial approximation curve for each size of tumorsphere. Figures 5a and 5b correspond to Patient 1
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(a) Time 30 s (b) Time 60 s (c) Time 90 s

(d) Time 120 s (e) Time 150 s (f) Time 180 s

Figure 4: Results of applying the unsupervised image classification method to the images of Figure 1.

and Patient 2, respectively. All regression curves are increasing functions, indicating the penetration rate
increases with the passage of time.

Figure 6 shows the variation of topotecan penetration rate, depending on the exposure time in a boxplot
graph. Figures 6a and 6b correspond to Patient 1 and Patient 2, respectively. It can be observed that as
tumorsphere size increases, the width of the boxplot increases, indicating an increment in the penetration time.

Tables 4 and 5 show the obtained linear model results for the Patient 1 model. They exhibit the coefficient
estimates, its standard error, the results of applying the t test, the R2 error, the adjusted R2 error and the results
of applying the Fisher test.

The negative sign of coefficients β̂11 and β̂12 indicates that as the size of the tumorsphere is smaller, the
penetration time decreases. It can be observed, in the p-value column, that the null hypothesis of t-test
is rejected with a significance level η = 0.05. It shows that the estimated coefficients β̂10 , β̂11 and β̂12 are
significantly different of zero. Fisher test p-value = 4.269e − 07 from Table 5 shows that the null hypothesis
of Fisher test is rejected with a significance level η = 0.05. R2 > 0.5 and Adjusted R2 > 0.5 indicate an
admissible error.

Table 6 shows the topotecan complete penetration time estimates (in seconds) for Patient 1, following the
model from Eq. 1.

Tables 7 and 8 show the linear model results for Patient 2 model. The negative sign of coefficients β̂21 and β̂22
indicates that as the size of the tumorsphere is smaller, the penetration time decreases. It can be observed in the
p-values column that the null hypothesis of t-test is rejected with a significance level η = 0.05. It shows that the
estimated coefficients β̂20 , β̂21 and β̂22 are significantly different of zero. Fisher test p-value from Table 8 shows
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Table 2: Topotecan penetration rate for the segmented image sequence of Figure 4.

Image Time (s) Percentage

1 0 0%
2 30 10, 27%

3 60 45, 94%
4 90 54, 87%

5 120 63, 70%

6 150 81, 14%
7 180 87, 90%

Table 3: Average penetration rate at 60s.

S M L
Patient 1 67.82% 59.96% 36.01%
Patient 2 66.62% 15.44% 12.83%

that the null hypothesis of Fisher test is rejected and R2 > 0.5 and Adjusted R2 > 0.5 indicate an admissible
error. Table 9 shows the topotecan complete penetration time estimates (in seconds) for Patient 2, following the
model from Eq. 1.

It can be observed that β̂2i >> β̂1i ∀ i = {0, 1, 2} which shows that penetration time in tumorspheres from
Patient 1 is lower than in tumorspheres from Patient 2.

We have shown that the data satisfy the Gaussian distribution but we did not include the results for space
reasons.

5 Conclusions and Future work

Microscopy images are noisy and have low contrast. Hence, their automatic analysis is a challenging endeavor.
In this work, we perform a study on microscopy image sequences with advanced image analysis procedures
which allows automatically observe the evolution of the topotecan within tumor cells.

Based on visual expert observation, we verified that the active contour method MGAC is very accurate in
finding the tumorspheres contour. The machine learning pixel classification method has a solid theory that
supports it and produces very reliable results. In order to estimate the penetration time of topotecan, we
use a qualitative predictors multiple linear model. Computed statistics show that the model fits the data with
precision, providing good estimates. Additionally, results show that topotecan penetration rate in tumorspheres
from Patient 1 is faster than in tumorspheres from Patient 2, 27% faster for tumorspheres of large size, 32%
faster for medium size and 43% faster for small size.

Our findings confirm that the time of topotecan penetration into the retinoblastoma cell is greatly affected
by the size of the tumorspheres and by the chemotherapeutic treatment that the patient has previously received.
These automatic procedures could potentially help to understand chemotherapeutic dosage and timing constraints.

This work has several limitations. First, tumorspheres are tridimensional structures that are flattened in order
to be used on the microscopy. Additionally, the parameters of the topocan penetration dynamics is different
for 2 patients, and this may hinder the use of a generalized model for clinical use. Although the acquisition
of this type of images from cell cultures is a very daunting and time consuming procedure, the size of the test
dataset (two test persons) allows a limited proof-of-concept validation that requires further experimentation in
order to generalize the results and their applicability. Due to the complexities of the generation of cell cultures,
increasing the size of the dataset by acquiring more images is not a valid option. Hence, future work points
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Figure 5: Penetration rate vs. time, depending on tumorspheres size for Patient 1 ( 5a) and Patient 2 ( 5b). The
curves indicate polynomial approximation for each dataset.

Table 4: Coefficient Estimates Patient 1.

Estimate Std. Error t value p-value

β̂10 357.86 18.90 18.934 1.59e-15
β̂11 -189.11 31.34 -6.034 3.74e-06
β̂12 -252.86 40.09 -6.307 1.96e-06

towards the generation of synthetic data that could capture the specific characteristic of these fluorescence
microscopic images by using Generative approaches for data augmentation like Variational Autoencoders
(VAE) or Generative Adversarial Networks (GAN).

Table 5: Patient 1 model validation.

R2 Adjusted R2 F-statistic p-value
0.7207 0.6964 29.67 4.269e-07
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Figure 6: Penetration rate vs. time in a boxplot graph, depending on tumorspheres size, for Patient 1 ( 6a) and
Patient 2 ( 6b).

Table 6: Penetration time estimates, following Eq. 1, Patient 1.

Size L M S

T̂ 357.86 168.75 105

Table 7: Coefficient Estimates Patient 2.

Estimate Std. Error t value p- value

β̂20 1279.41 75.01 17.056 8.82e-14
β̂21 -769.41 146.86 -5.239 3.42e-05
β̂22 -1039.41 318.24 -3.266 0.00369

Table 8: Patient 2 model validation.

R2 AdjustedR2 F-statistic p-value
0.6216 0.5855 17.25 3.704e-05

Table 9: Penetration time estimates, following Eq. 1, Patient 2.

Size L M S

T̂ 1279.41 519 240
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