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Abstract

Many recent image captioning works employ the Encoder-Decoder architecture, with Convolutional
Neural Networks (CNNs) as feature extractors. This work presents a thorough experimental study about
feature extraction using CNNs for the task of image captioning, in the context of deep learning. We examined
12 feature extraction architectures (from the VGG, ResNet, Inception, InceptionResNet, DenseNet, and
NASNetLarge model families) and assessed their effectiveness as feature extractors using image captioning
quality measures. The total is 72 experiments on 12 image classification CNNs, pre-trained on the ImageNet
dataset. The features are extracted from the last layer after removing the fully connected layer and fed
into the captioning model. We used a unified captioning model with a fixed vocabulary size across all
the experiments to study the effect of changing the CNN feature extractor on image captioning quality.
The scores are calculated using the standard metrics in image captioning. We found a strong relationship
between the CNN model structure and the image captioning dataset, and that among the tested feature
extraction CNNs, Xception and InceptionResNet V2 were the most robust while the two VGG models gave
the least quality for image captioning. Based on these results, we recommend a set of pre-trained CNNs for
each of the image captioning evaluation metrics that we want to optimise. To our knowledge, this work is
the most comprehensive comparison between feature extractors for image captioning.
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1 Introduction

Image captioning is one of the trending problems in modern Artificial Intelligence (AI). It is concerned with
generating an output text describing an input image, where the output can be one or more sentences. Image
captioning crosses the fields of computer vision and natural language processing. The problem of image cap-
tioning is traditionally solved using machine learning techniques, and recently deep learning techniques are
gaining more popularity for such applications.
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For a long time, in computer vision problems, features had to be extracted by human-engineered feature extrac-
tion algorithms, such as the Scale-Invariant Feature Transform (SIFT) proposed by Lowe [1] and the Speeded-
Up Robust Features (SURF) proposed by Bay et al. [2]. However, with the advancements in convolutional
neural networks and the good results achieved when letting CNNs automatically discover the features in order
to classify images, the automatic feature extraction done by the convolutional layers in a CNN is receiving more
attention.

This superiority of CNN features for high-level vision tasks has been demonstrated empirically in many pre-
vious works. In this regard, Gong et al. [3] presented an analysis of Content-Based Image Retrieval (CBIR)
methods, in which CNN methods yielded better performance in the overall-precision and overall-recall metrics.
Furthermore, Shin et al. [4] did a multi-class sentiment image classification experiment to choose their feature
extraction method for sentimental image captioning. When they used features extracted from the VGG model,
they obtained much better Top-1 accuracy of classification on the Sentiment dataset than the accuracy obtained
when they used SIFT features combined with a global color histogram.

Previous works in this domain handled image representation from different aspects, but did not investigate
the direct effect of the feature extraction model on image captioning quality measures. The success of some
CNNs in a domain does not necessarily imply that they are going to succeed in another. This suggests the need
for a study that investigates image representation models for the task of image captioning.

In this work, we explore how well different pre-trained CNNs perform when used as the feature extraction
module of an image captioning system. We examine the performance of 12 pre-trained CNNs, trained on the
ImageNet dataset [5], in an image captioning system that uses soft attention and an Encoder-Decoder architec-
ture. The experiments were done on three standard benchmark datasets in the image captioning field: Flickr8k
[6], Flickr30k [7] and MS COCO [8]. Figure 1 depicts the phases of image captioning in deep learning. In this
work, we focus on the CNN visual feature extraction phase.

Figure 1: An illustration of image captioning in deep learning.

In the rest of this paper, we discuss in section 2 the related works in the domain. In section 3, we present our
methodology, which includes the adopted network architectures, the datasets we used, and the pre-processing
that we performed. In section 4, we present the design and the results of our experiments, compared to previous
works. In section 5, we conclude our work.

2 Related Works

Typical CNNs consist of convolutional layers, pooling layers and fully connected layers, with the output of each
layer being a function of the output of previous layers. In order for a CNN to be used in image classification,
its output must be invariant to semantically-irrelevant changes. Several recent works tried to unravel the power
of CNNs in feature extraction, such as the works in [9], [10] and [11] that experimented with features from the
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output of multiple layers of the network.

In [12], Tran et al. worked on solving the problem of describing images in the wild. They addressed the chal-
lenges of captioning quality with respect to human evaluation, handling out-of-domain data, and low latency.
The model can detect a wide range of visual concepts. Their work included developing an entity recognition
model to identify celebrities and landmarks, and a confidence model for caption output. For feature extraction,
they used ResNets.

In [13], Valev et al. made a comparison of state-of-the-art pre-trained models on fine-grained image classi-
fication using the Stanford Cars-196 dataset [14]. Interestingly, the top two accurate methods (DenseNet161
and DenseNet121) were the two recommended pre-trained CNNs in [15] as feature extraction modules.

In [16], a method for scaling was introduced to scale the depth, width and resolution uniformly. The au-
thors demonstrated the usefulness of this method on scaling up MobileNets and ResNets. They also included a
comparison of state-of-the-art pre-trained CNNs in image classification. In [17], Xie et al. presented a compar-
ison with more focus on their Noisy Student Training method.

In [18], Irvin et al. performed an experiment to test the performance of ResNet152, DenseNet121, Inception
V4, and SEResNeXt101 on the CheXpert dataset*, with DenseNet121 performing the best. In [19], DenseNets
were used in nine of the top ten CheXpert competition models as a part of their ensemble, while DenseNets
were overperformed on ImageNet.

In [15], Holliday and Dudek performed a wide-range evaluation of CNNs as feature extractors for match-
ing visual features under large changes in appearance, perspective and visual scale. Their evaluation covers
82 different layers from twelve different CNN architectures belonging to four families: AlexNets, VGG Nets,
ResNets and DenseNets, evaluating their usefulness in matching tasks under challenging variations in perspec-
tive and appearance. They found significant differences both in robustness and feature size among different
architectures. According to their work, the overall best features were the outputs of the third transition block of
DenseNet architectures, especially DenseNet121 and DenseNet161, which provide slightly different trade-offs
of accuracy to feature size.

Most image captioning evaluation metrics over-penalise mismatches between reference and generative captions
because of not considering the intrinsic variance between ground truth captions. In [20], Yi et al. introduced
a novel metric based on the metric of BERTScore to handle this challenge. It extends the BERTScore with
features appropriate for image captioning.

The work of Sharif et al. [21] contained a comparison of six CNNs as global feature extractors for their image
captioning model. They tested the Inception V3, DenseNet201, InceptionResNet V2, ResNet152 V2, Xception
and NASNet CNNs. They used Flickr30k for testing. NASNet gave the best results in their experiment.

In [22], Zhang et al. proposed an image captioning model with a variation of the Long Short-Term Mem-
ory (LSTM) called parallel-fusion LSTM (pLSTM). It fuses two LSTM units by the hidden state at each time
step. This makes the attributes and visual information complementary for generating more accurate descrip-
tions. The first variation is pLSTM with attention (pLSTM-A), which captures the crucial semantic and visual
information for generating captions. The second variation (pLSTM-G) directly adjusts the hidden state of a
visual LSTM using synchronous semantic information to the critical region.

*CheXpert is a dataset of medical chest X-ray images
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In [23], Zhang et al. incorporated the Transformer model for the task of image captioning. They improved
the Transformer model in two manners. The first is augmenting the Maximum Likelihood Estimation (MLE)
with an extra Kullback-Leibler (KL) divergence term to distinguish the difference between incorrect predic-
tions. The second is a method that they introduced for leveraging the knowledge graph to help the Transformer
to generate captions.

In [24], Ke et al. investigated the feature extraction performance of 16 popular CNNs on CheXpert. They
did not find a relationship between the performance on ImageNet and the performance on the medical image
dataset. However, they found out that the choice of CNN architecture influences performance more than the
concrete model within the model family for medical tasks. They also noticed that pre-training on ImageNet
gives a boost to performance in all architectures, with a lower boost for bigger ones.

3 Our Approach

In this paper, we compare 12 architectures (from the VGG, ResNet, Inception, InceptionResNet, DenseNet,
and NASNetLarge model families) for feature extraction and evaluate their performance as feature extractors
using the metrics used for image captioning. The feature extraction model was incorporated into the captioning
model, one at a time, and then tested.

3.1 The Adopted Network Architectures

In this work, we use the top three pre-trained CNNs in the Keras library† in both Top-1 and Top-5 accuracy
(NASNetLarge, InceptionResNet V2 and Xception) and add Inception V3. Also, from the results of [15], we
include the top two models from the VGG Net architecture (VGG16 and VGG19), all the models with which
they experimented from the ResNet architecture (ResNet50, ResNet101 and ResNet152) and the top three mod-
els from the DenseNet architecture (DenseNet121, DenseNet169 and DenseNet201). The total is 12 models,
but only one is in use at a time.

VGG [25] is one of the classical CNN architectures, known for its simplicity. The network consists of small
3×3 filters, pooling layers and a fully connected layer. VGG16 has 16 layers, while VGG19 has 19 layers.

ResNets [26] (short for Residual Networks) use residual connections, which sum the output of a block of
layers with its input and pass it as input to the subsequent layer. ResNets learn a residual mapping instead of
hoping that a group of stacked layers directly fits a desired underlying mapping. The number of the model (50,
101 and 152) refers to the number of layers in the model.

Inception V3 [27], from the Inception family, is a convolutional neural network for image classification. It
has 48 layers and uses symmetric and asymmetric blocks that include convolutional layers, average pooling
layers, max pooling layers, concatenation, dropouts and fully connected layers at the end.

Xception [28] (Extreme version of Inception) has 71 layers with a modified depth-wise separable convolu-
tion method instead of Inception modules. It takes inspiration from Inception V3 and outperforms it through
better use of model parameters.

The InceptionResNet model [29] combines the Inception structure with the residual connection method. In
InceptionResNet, Residual connections are combined with convolutional filters of multiple sizes to form the
Inception-ResNet block. Residual connections reduce the time of training and avoid the degradation problem

†Available at https://keras.io/

https://keras.io/
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that deep structures produce.

The DenseNet architecture [30] is a convolutional neural network that employs dense connections between
layers using “Dense Blocks”, in which all layers are connected with each other directly. Every layer takes
additional inputs from all layers before it and gives input to all succeeding layers. The numbers 121, 169 and
201 denote the depth of the model.

NASNetLarge [31] uses the technique of Neural Architecture Search (NAS), in which the blocks of the CNN
are searched by reinforcement learning. It uses two types of convolutional cells to formulate feature maps:
normal cells that return maps of the same height and width, and reduction cells, where the height and width of
the feature map are reduced by a factor of two.

For the image captioning model, we focus on the methodology of “Show, attend and tell” [32] with some
modification. We chose this model because it is simple, fast to train and evaluate, and uses attention to generate
captions. So it can represent image captioning systems that adopt an Encoder-Decoder architecture with atten-
tion.

For the encoding part, the model employs a convolutional neural network for feature extraction, without fine-
tuning. It produces a feature map from the last layer before the fully connected layer. The output of the feature
extraction phase is L vectors, with each vector being a D-dimensional representation that corresponds to a part
of the image. The model learns an embedding space of length 256 using one fully connected layer.

For the decoding part, we use a Gated Recurrent Unit (GRU) [33] instead of an LSTM in [32] to exploit
the speed and low memory usage in a GRU. It produces a caption by generating one word at every time step,
conditioned on a context vector, the previous hidden state, and the previously generated words. The model can
be trained using the backpropagation algorithm deterministically.

For attention, we use the Bahdanau soft attention as introduced in [34]. It computes a soft attention weighted
annotation vector using the formula:

Φ({a(i)}, {α(i)}) =
L∑
i

α(i)a(i) (1)

This deterministic attention makes the model as a whole smooth and differentiable.

3.2 Datasets

The datasets that we used are three of the most used in image captioning: Flickr8k [6], Flickr30k [7] and MS
COCO [8]. They are all collected from the Flickr photo sharing website and consist of real-life images, anno-
tated by humans (five annotations per image). Table 1 contains a brief comparison. It is worth noting that MS
COCO does not publish the labels of the testing set.

Dataset Training split Validation Split Testing Split Total Images
Flickr8k 7k 1k 1k 8k
Flickr30k 28k 1k 1k 30k

MS COCO 83k 41k 41k 144k

Table 1: A comparison of the used datasets.
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3.3 Pre-processing

In this section, we present the performed pre-processing steps on the data in this work:

1. Randomly sort the dataset, in pairs of image-caption.

2. Decode the images.

3. Resize the images to the size that the CNN expects. Every CNN has its own expected size.

4. Tokenise the text. For each sentence in the text, it is split into tokens by punctuation, special characters
and white space.

5. Count the tokens, sort them by frequency and select the 15,000 words with the highest frequency as the
vocabulary of the system. This helps to eliminate words that are less likely to be needed and prevents
over-fitting.

6. Generate word-to-index and index-to-word structures. After that, they are used to convert token se-
quences into word-id sequences.

7. Padding: sequences of identifiers are padded at the end, so that all sequences have the same length.

4 Experiments and Results

The experiments were run on a mainframe with 32 GB of memory, an Intel Core i9-9900K CPU and an NVIDIA
GeForce RTX 2080 GPU. The code is written in the Python programming language and TensorFlow library.
All pre-trained models were provided by the Keras library. We report the results on three benchmark datasets,
using the evaluation and testing sets, on 12 pre-trained models, resulting in 72 experiments.

We used different evaluation metrics that are commonly used in the image captioning domain. BLEU met-
rics [35] are widely used in automatic evaluation of machine-translated text and measure the correspondence
between a machine translation output and a human translation, in the case of image captioning the machine
translation output corresponds to the automatically-generated caption and the human translation corresponds to
the human description of the image. METEOR [36] is calculated using the harmonic mean of unigram precision
and recall with a higher weight for the recall than that of the precision, it is calculated as follows:

METEOR =
10× Precision×Recall

Recall + 9× Precision
(2)

ROUGE-L [37] evaluates the adequacy and fluency of the generated text through a Longest Common Sub-
sequence (LCS) score, whereas CIDEr [38] focuses on grammaticality and saliency. SPICE [39] analyses the
semantics of the generated text through constructing a “scene graph” for both the original caption and the gen-
erated caption, and then matches the words only if their lemmatised WordNet representations are equal. BLEU,
METEOR and ROUGE are not well correlated with human assessments of quality, whereas SPICE and CIDEr
have better correlation, but tend to be harder to optimise. We multiplied the scores by 1000 to avoid redundancy.

The model was trained and tested for each combination of datasets and CNNs, once trained on the training
set and then tested on the validation set, and once trained on the training and validation sets combined and then
tested on the testing set.

We report three tables describing the results on Flickr8k, Flickr30k and MS COCO. The best three results
of each evaluation metric on the testing sets are written in boldface. The discussion will consider the testing
results, but the development set scores are also reported to reflect the model’s ability to generalise. The testing
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is done after training on the training and development sets combined. As the MS COCO dataset does not pro-
vide labels for testing data, the testing set used here is the validation set (about 41,000 images), unlike many
previous works that used Karpathy’s split [40] (1000 testing images) because of the importance of large testing
data in our experiment. The features were extracted from the last layer after removing the fully connected layer,
and the captioning model was trained on a vocabulary size of 15,000 words.

Table 2 presents the results of the different architectures on the Flickr8k dataset. We sorted the scores and
presented the results in Figure 2. It is notable that ResNet101, ResNet152, DenseNet201 and Xception take the
lead in all of the metrics.

We use the following abbreviations in figures: RN50: ResNet50, RN101: ResNet101, RN152: ResNet152,
IncV3: Inception V3, Xcep: Xception, IncRNV2: InceptionResNet V2, DN121: DenseNet121, DN169:
DenseNet169, DN201: DenseNet201, NASNL: NASNetLarge.

Model (Train/Test) BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE
VGG16 607 393 459 219 336 112 239 55 238 135 671 168 480 311 177 82
VGG19 576 416 434 239 316 131 225 71 244 139 627 178 477 316 186 88

ResNet50 638 404 503 232 387 127 293 68 264 143 797 198 519 322 203 94
ResNet101 654 449 516 265 399 150 304 79 259 153 796 231 519 346 200 99
ResNet152 653 445 517 263 399 148 301 79 264 155 815 249 521 349 204 103

Inception V3 604 411 457 235 336 129 243 70 243 139 683 198 484 319 183 88
Xception 631 440 492 259 373 147 278 80 252 151 742 224 501 341 196 97

InceptionResNet V2 541 434 397 250 285 135 202 72 231 145 575 219 451 331 176 95
DenseNet121 609 410 466 230 349 123 257 63 244 144 714 204 489 320 184 94
DenseNet169 593 426 453 250 337 139 245 74 250 148 709 209 491 337 190 95
DenseNet201 634 447 492 261 373 144 278 72 249 150 759 230 506 340 190 96
NASNetLarge 698 390 578 219 472 119 379 62 290 148 984 191 568 314 222 99

Table 2: Experimental results on the Flickr8k dataset.

Figure 2: Sorted scores on the Flickr8k dataset.
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In Table 3, we present the scores of the different architectures on the Flickr30k dataset, using the studied
evaluation metrics. Figure 3 shows the sorted scores. We can see that Xception, NASNetLarge and Inception-
ResNet V2 take many of the first three places.

Model (Train/Test) BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE
VGG16 457 360 287 183 179 93 110 47 155 116 279 102 342 270 98 62
VGG19 456 379 284 197 175 98 107 51 155 119 272 106 338 279 98 63

ResNet50 513 380 343 208 228 111 150 58 174 130 366 133 379 298 117 72
ResNet101 494 376 329 206 216 109 141 58 180 125 353 122 380 288 121 71
ResNet152 497 376 332 199 220 103 144 52 183 121 358 125 385 282 123 67

Inception V3 479 390 308 205 196 104 124 52 167 123 307 127 364 287 111 71
Xception 485 399 319 220 208 117 135 62 176 123 337 148 372 293 118 74

InceptionResNet V2 474 395 297 213 185 111 114 57 158 131 287 150 348 294 104 76
DenseNet121 445 374 281 203 176 107 109 55 165 125 269 120 349 289 107 71
DenseNet169 469 392 300 211 188 108 117 56 165 125 302 129 354 295 109 68
DenseNet201 477 384 305 205 192 106 120 55 164 122 311 134 355 289 107 68
NASNetLarge 515 397 349 216 237 114 160 60 187 126 402 160 398 293 129 71

Table 3: Experimental results on the Flickr30k dataset.

Figure 3: Sorted scores on the Flickr30k dataset.

Table 4 presents the results of the different architectures on the MS COCO dataset. In Figure 4, we can
notice that NASNetLarge performs the best in all metrics and InceptionResNet V2 consistently scores among
the highest in all of the metrics as well. For the BLEU scores, InceptionResNet V2 and Xception score the
second and third place, respectively. Because MS COCO is the largest among the datasets that we used, we
consider that scores on it have higher reliability than the results on Flickr8k and Flickr30k.
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Model (Train/Test) BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L SPICE
VGG16 499 447 318 263 196 150 119 84 169 149 391 282 367 332 112 94
VGG19 502 449 321 266 199 152 121 85 174 152 409 293 374 338 117 96

ResNet50 534 476 351 282 224 162 141 92 194 159 508 343 404 352 134 102
ResNet101 525 474 344 288 219 168 137 96 190 167 488 351 396 362 132 108
ResNet152 537 478 353 289 225 168 142 96 190 163 506 346 399 359 133 105

Inception V3 518 478 334 288 210 167 130 95 186 160 473 341 392 351 127 105
Xception 530 484 349 291 223 170 141 98 189 163 510 362 398 359 133 107

InceptionResNet V2 519 485 338 295 211 173 129 99 181 164 449 358 388 358 124 109
DenseNet121 518 476 333 287 207 167 127 96 181 164 450 346 384 358 124 106
DenseNet169 507 474 327 285 206 165 127 94 186 158 449 335 387 348 128 103
DenseNet201 520 474 336 288 212 168 132 97 178 163 453 341 384 356 122 106
NASNetLarge 572 488 394 298 265 176 177 103 205 174 605 390 428 368 147 117

Table 4: Experimental results on the MS COCO dataset.

Figure 4: Sorted scores on the MS COCO dataset.

If we analyse the results in regard to each individual metric, we cannot conclude one best feature extraction
model to optimise all metrics, so we prefer models that keep a high ranking across different datasets. We focus
in our analysis on the “reliability” of the feature extraction model across datasets.

BLEU-1. For Flickr8k, ResNet101, DenseNet201 and ResNet152 score the highest, while scoring among
the lowest in Flickr30k and MS COCO. NASNetLarge scores very high in Flickr30k and MS COCO but the
lowest in Flickr8k. However, Xception and InceptionResNet V2 retain their positions in the top half.

BLEU-2. Xception and InceptionResNet V2 retain places in the top half. As in the case of BLEU-1, NAS-
NetLarge does unreliably appear on the top.

BLEU-3. For BLEU-3, the unreliable top status of NASNetLarge and ResNet152 is also apparent. ResNet101,
Xception and InceptionResNet V2 are always in the top half.

BLEU-4. Xception takes the top place in Flickr8k and Flickr30k and the fourth rank in MS COCO. Xception,
ResNet101 and InceptionResNet V2 stay in the top half.

We can notice that Xception scores well across all BLEU metrics. In general, models that score well on one
BLEU metric performed well on the other BLEU metrics. This is an expected consequence of the relatedness
of the BLEU metrics.

METEOR. ResNet101 and NASNetLarge are the only ones always in the top half, while other models greatly
change ranks.

CIDEr. For CIDEr, only Xception and InceptionResNet V2 retain places in the top half.
ROUGE-L. In the case of ROUGE-L, only Xception and InceptionResNet V2 remain in the top half. The
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others vary greatly in rankings.
SPICE. ResNet101, NASNetLarge and Xception remain reliably in the top half.

Table 5 contains a summary of our recommended models for optimising each evaluation metric. For each
metric, we list the models that always appeared in the top 6 ratings across the three different datasets. We use
this simple heuristic of recommending a specific model because of the lack of a unified evaluation metric for
image captioning, and the diversity between the results across datasets. In these results, Xception, followed by
InceptionResNet V2, appear to yield the most robust features for image captioning.

Metric Recommended Models
BLEU-1 Xception, InceptionResNet V2
BLEU-2 Xception, InceptionResNet V2
BLEU-3 ResNet101, Xception, InceptionResNet V2
BLEU-4 ResNet101, Xception, InceptionResNet V2

METEOR ResNet101, NASNetLarge
CIDEr Xception, InceptionResNet V2

ROUGE-L Xception, InceptionResNet V2
SPICE ResNet101, NASNetLarge, Xception

Table 5: A summary of the recommended models for optimising each evaluation metric.

Interestingly, the results that we find in our work are consistent with the results of [24], in which Ke et al.
found a strong influence of the model family on the results, more than the size of the model. They demon-
strated that architectures that work for ImageNet do not necessarily work for medical imaging tasks, which
resembles the superiority of certain architectures on each dataset in our experiment results. They also reported
that newer architectures generated from NAS on ImageNet (EfficientNet, MobileNet and MNASNet) underper-
formed DenseNets and ResNets, which is consistent with our result that NASNetLarge performed the best in
MS COCO, which is the largest of the used datasets in our work.

Unlike the work of Holliday and Dudek [15] and the work of Valev et al. [13], we do not recommend
DenseNet121 nor DenseNet161 as feature extractors because of their relatively low performance. Although
DenseNet161 was not in our experiment set, but none of the DenseNet variations performed consistently well
across the datasets in this experiment to be in our recommendation list. Irvin et al. [18] also recommended
DenseNet121. We justify the disagreement between their recommendations and ours by the difference in the
domain of use. In [15], Holliday and Dudek measured robustness for a) Scale and perspective, and b) Appear-
ance. In [13], Valev et al. worked with fine-grained vehicle classification, while in [18], Irvin et al. worked
on the detection of the presence of 14 observations in medical chest images. So, none of them tried to actually
generate descriptive text from an image.

The results of Sharif et al. [21] on Flickr30k conform to our results, in which they found that NASNetLarge per-
formed the best on BLEU-1, ROUGE-L, METEOR and CIDEr. In order to give a comparison of the captioning
output using the different feature extraction approaches, we applied them on a new example of an every-day
image randomly selected from Wikipedia.‡ Figure 5 presents the input image along with a table giving one
caption output for each feature extraction CNN approach. Among the captions presented, the Xception and

‡Image source: https://upload.wikimedia.org/wikipedia/commons/e/e1/NYC_14th_Street_looking_
west_12_2005.jpg

https://upload.wikimedia.org/wikipedia/commons/e/e1/NYC_14th_Street_looking_west_12_2005.jpg
https://upload.wikimedia.org/wikipedia/commons/e/e1/NYC_14th_Street_looking_west_12_2005.jpg
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InceptionResNet V2 captions seem the most accurate.

It can be noticed that VGG, ResNet and DenseNet169 captions have grammatical errors. ResNet152 and
Inception V3 captions have some repetition. DenseNet201 captured the nature of the image (“outdoor”, “blue
shirt”, “car”, “way”, “posing”) correctly but failed to describe it. NASNetLarge captured that there are people
in the picture.
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Model Caption

VGG16 with carefully rubber garb side suit dog shirt smiling streamers while clothing of-
fering about < end >.

VGG19

a sizes in water products on water back sitting on crawling written crawling on into
a picture and some sort into into at at that lounge on over into be on water products
at that photo surfing something products on and water pans take products under
< end >.

ResNet50
a open at a while talk on a while playing for hand out his head of an garb picking
with a luggage moving two jean while at a corner of a chair at his board front of an
knees with a plate < end >.

ResNet101
some at outside a farm surrounded by a child sits to a cute sitting on next to a adult
and eating of a person is standing on to a cellphone is reaching with a standing at a
on and the is eating something like a white behind a cell is over her.

ResNet152
are standing and hiding a meal holding is standing near a chair at the floor next to a
next to a chair giving is in an old clothes in to a giving a surfboard giving a animals
sitting in to a scale before a jacket man giving a scale while an ducks.

Inception V3
a frisbee in the camera in the camera in front of a feeding a fire in front of a frisbee
in the camera with a lone frisbee in an open to climb inside of a frisbee in front of a
tennis out to the at the camera and another person standing outside.

Xception a girl holding a large and another walks off on the front < end >.
InceptionResNet V2 a person posing in some holding a bright orange flowers < end >.

DenseNet121
a plane while standing in the cool shirt is on the top of a rope from an wild bends
at a horse and flowers in front of a skateboard on a chair looking up to see another
man is standing near a pair of a blue outfit is post from a gray.

DenseNet169
large pile of a small dark room in the edge of a white bowl of a deck of a wooden
railing of a cake there outfit next to get his phone in front of a kitchen next to be a
deck near a vase next to touch if the < unk > of a.

DenseNet201
an outdoor tennis on a high side of a large cell phone are playing a chair with a
wooden bench with a beautiful blue shirt is ride on a motor car on the edge of a new
coca cola way that is posing in a hand < end >.

NASNetLarge
some kind of the man in the next to get up on a cowboy hat holds some people are
on a hose sitting in the man in the milk on a tripod taking a man sits beside a long
legs on stands in a hose to be getting gear drinking from a.

Figure 5: An example image with its captions for each feature extraction CNN. The “< unk >” token means
a word our of the vocabulary.
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5 Conclusions

For comparing the convolutional neural networks as feature extractors for the image captioning task, we per-
formed 72 experiments on 12 CNNs pre-trained on the ImageNet dataset. The features were extracted from the
last layer after removing the last fully connected layer. The image captioning model was trained and tested on
three datasets and evaluated with eight different evaluation metrics that capture different aspects of image cap-
tioning quality. The results indicate a very strong relationship between the nature of the data and the structure
of the feature extraction model in use. When possible, an image captioning model can be optimised for the
data by using the CNN adequate for the dataset in question. However, in this work there are CNNs that have
a certain degree of reliability for optimising a specific metric regardless of the dataset in question. On the MS
COCO dataset, which is the largest in the experiment, NASNetLarge performed the best in all of the metrics.
Xception and InceptionResNet V2 gave the most robust features across datasets. They performed consistently
well in most of the metrics for the three datasets.

Future work can explore what makes certain CNN models perform better on certain datasets than others, and
develop a more advanced CNN architecture that produces better and more robust features. We also recom-
mend running experimental studies on the same datasets for other computer vision tasks such as object/event
recognition or 3D scene reconstruction from real-world images.
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