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Abstract

Compressive sensing of 2D signals involves three fundamental steps: sparse representation, linear mea-
surement matrix and recovery of the signal. This paper focuses on analysing the efficiency of various
measurement matrices for compressive sensing of medical images based on theoretical predictive coding.
During encoding, the prediction is efficiently chosen by four directional predictive modes for block based
compressive sensing measurements. In this work, Gaussian, Bernoulli, Laplace, Logistic and Cauchy ran-
dom matrices are used as the measurement matrices. While decoding, the same optimal prediction is de-
quantized. Peak-signal-to-noise ratio and sparsity is used for evaluating the performance of measurement
matrices. Experimental result shows that the spatially directional predictive coding (SDPC) with Laplace
measurement matrices performs better compared to scalar quantization (SQ) and differential pulse code
modulation (DPCM) methods. The results indicate that Laplace measurement matrix is the most suitable in
compressive sensing of medical images.
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1 Introduction

Compressive sensing (CS) is a path-breaking development in signal processing. Compressive sensing involves
signal acquisition and compression mechanism and thereby the signal is captured in its compressed form. Com-
pressive sensing is not sensing and compression but compressing while sensing itself. The compressive sensing
has three stages of processing namely, sparse representation, linear measurement and recovery or reconstruc-
tion of the image. It requires the images to be sparse, which is valid as most of the medical images are sparse.
Based on the literature, the challenges in compressive sensing are computationally expensive reconstruction
process and dimension reduction [12].Compressive sensing is applied in many fields, such as Image process-
ing [18], [20], signal processing [11], medical imaging [19], spectral and hyper-spectral imaging [22], Radar
imaging [22] and sampling theory [11]. Generally in medical imaging the compressive sensing has been used
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to obtain a high resolution image with low noise. Recently to address the challenges, many algorithms have
been developed by using block based compressive sampling [3]. Sparse representation, linear measurement
and Recovery are the steps where regular developments are happening. The sparse process is implemented by
projecting an original image on a suitable basis where it is represented as sparse. If an image is sparse then
the matrix representation of the image contains most of the elements as zero [6]. For examples, some of the
projection basis used in compressive sensing is the Contourlet transform, Fast Fourier transform (FFT), dis-
crete wavelet transform (DWT), Dual-tree transform (DDWT) and Discrete cosine transform. In case of signal
being sparse in original domain, the sparse representation process can be ignored. Otherwise it is taken care
by means of mathematical transforms. In the CS process the difficulty is in selecting a suitable measurement
matrix, which may if therefore the efficient recovery of an image. In order to ensure the best recovery of the
image, the measurement matrix must satisfy Restricted Isometric Property (RIP).

Figure 1: Compressive sensing of the signal

Many algorithms have been developed based on CS theory. Duarte et al [7] developed a single-pixel com-
pressive sensing camera which is based on the concept of CS theory. James E. flower et al proposed the scalar
quantization with differential pulse based modulation which is called the block based compressive sensing
(BCS) [4]. Jian zhang et al proposed the spatially directional predictive coding with Gaussian random matrix
as the measurement matrix for natural images [15].

The objective of this work is to analyse the effectiveness of various measurement matrices for directional
predictive coding of medical images. This involves the comparison of SQ, DPCM, SDPC of the compressed
images followed by reconstruction using Gaussian, Bernoulli, Laplace, Logistic and Cauchy measurement ma-
trices is to have More than 30 dB Peak Signal to Noise Ratio (PSNR) criterion for the selection of measurement
matrix for the reconstruction of image. This paper is organized as follows: in Section 2 overview of the pre-
dictive coding is discussed. In Section 3 Laplace, Logistic and Cauchy measurement matrices satisfies RIP is
demonstrated using Mat-lab. Experimental results are shown in Section 4 and conclusions are drawn in Section
5.

2 Overview of the Predictive Coding

In compressive sensing, sparsity is one of the important fundamental processes. If a signal is sparse in original
domain or in some transformed domain by extension then CS allows exact recovery of the signal from its time
or space measurements acquired by linear projection. The sparse image can be compressed to low dimensional
image using the measurement matrix [3]. Subsequently the original image is restored using measurement matrix
and reconstruction algorithm. The detail of the predictive coding is given below.

The input image x is divided into n non-overlapped blocks of size B × B in vector representation along
the horizontal scan order, each block is denoted by xi ∈ RB2

, i = 1, 2, . . . , n Then all the blocks of CS
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Figure 2: Block diagram for spatially directional predictive coding

measurements denoted by
yi = ϕB(x

i) (1)

are estimated, where yi ∈ RMB and ϕB are MB×B2 orthonormal measurement matrices with MB = M
N B2

. The usual choice for the measurement basis ϕ is a random matrix. Here, the choices are Gaussian, Bernoulli,
Laplace, Logistic and Cauchy random matrices. The encoder section can design four directional prediction
modes from its neighbouring reconstructed measurements namely vertical, horizontal, approximation and di-
agonal. More specially, let y i

A, y
i
B and y i

C denote the up-left, up, and left blocks respectively of measurements
with regard to yi. The four modes are represented as,

Vertical mode y i
V = y i

B (2)

Horizontal mode y i
H = y i

C (3)

Approximation mode y i
DC = (y i

B + y i
C) >> 1 (4)

Diagonal mode y i
Diag = y i

A (5)

where >> the symbol denotes the right shift operator. The collection of four prediction results defined in a set
Ξ,

Ξ = {y i
V , y

i
H , y i

DC , y
i
Diag} (6)

The optimal prediction denoted by y i
P , for the measurements of the current block is then determined by

minimizing the residue between yi and the measurement of four predictive results in set Ξ.

y i
P = argminy∈Ξ||y − yi||l1 (7)

Here, || ∗ ||l1 is l1 the norm, adding all the absolute values of the entries in a vector. After obtaining the
optimal prediction value of yi , the residual can be calculated by

d(i) = yi − y‘iP (8)

Which is then scalar quantized to acquire the quantization index,

s(i) = Q[d(i)] (9)

The operation of de−quantization of s(i) is then conducted to get the quantized residual di which is then
added by y i

P , producing the reconstructed CS measurements of yi denoted by ȳi is ready for the further
prediction coding. Bit stream is composed of two parts namely the flag of best predictive mode (2 bit) and
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the bits to encode s(i) by entropy coder. It can be noted that the 2 bit overhead is almost neglected for each
block when compared with exciting gains. For instance, if block size is set to be 16× 16, then the overhead is
only 2/256 = 0.0078bpp [8]. Every blocks of CS measurement use this process for achieving final bit stream.
Similarly, every block in reconstructed measurement is attained from bit stream in decoder side. By algorithms
of CS recovery it is then used for ultimate image reconstruction.

3 Restricted Isometry Property of Measurement Matrices

In compressive sensing construction of measurement matrix plays an important role. Not every matrix is
suitable for compressive sensing problem. Measurement matrices satisfying RIP can be used to recover the
compressed sensed medical images. The matrix which compressively senses the signal should have several
properties to keep its information content for recovery after being sensed. Donoho et al [21] proposed that a
measurement matrix should satisfy the following conditions:

(i) The column vector of measurement matrix must possess certain linear independence.

(ii) The column vectors are random and independent.

(iii) The solution that satisfies the sparsity is the vector that makes the norm minimum.

Candes et al proved that the restricted isometric property is the necessary condition for a measurement matrix
to recover the image without distortion [1]. The characteristic of measurement matrix is to have fewer amounts
of data supporting hardware implementation, possibility of algorithm optimization and broad applicability [9].
Let A be a matrix that satisfies the restricted isometric property (RIP) of order s if there exists a such that
δs ∈ (0, 1)

(1− δs)||x||22 ≤ ||Ax||22 ≤ (1 + δs)||x||22 (10)

where, x is the input matrix. Moreover, the matrix must satisfy the restricted Isometric property, i.e., (s, δs)
with restricted constantδs, δ > 0 this constant is also referred as restricted isometry constant [9]. Sparsity
basis and measurement basis vectors that are orthogonal are mutually independent and have no correlation with
each other. Therefore, to accomplish the pairwise independent between the vectors the measurement matrix is
orthogonalized, which is possible in CS.

3.1 RIP property of Gaussian and Bernoulli matrix:

Let ϕ be the Gaussian random matrix and its elements are independent and normally distributed with expecta-
tion between 0 and 1, mean 0 and variance 1/σ. The probability density function of a normal distribution is:

f(x) =
1

σ
√
2π

e
−(x−µ)2

2σ2 (11)

Where µ is the mean of the distribution and σ2 is the standard deviation. In general a matrix ϕ ∈ RM×N (M <<
N) satisfies the RIP of order k if there exists a δ ∈ (0, 1) such that,

1− δ ≤ ||ϕx1 − ϕx2||22
||x1 − x2||22

≤ 1 + δ (12)

holds for all K−sparse vectors x1 and x2. Here, M = O(klogN)

Let B ∈ RM×N random Bernoulli matrix and the values of the elements are +1/
√
M and −1/

√
M with

equal probabilities. The expected output will be n = 0 and n = 1 with equal probabilities of p = 1/2 and
q = 1− p = 1/2 respectively. Thus, the probability density function is:
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f(n) =

{
1
2 for n = 0
1
2 for n = 1

(13)

The RIP condition is satisfied with the probability which is same as the Random Gaussian matrix [4].

3.2 RIP property of Random Laplace, Logistic and Cauchy matrix

Let ϕ be the Laplace random matrix with mean 0 and variance 1. The probability density function of a Laplace
distribution is,

f(x) =
1

2s
e−|x−µ|/s (14)

where, µ - mean and s – scale parameter [17]. Let ϕ be the logistic random matrix and its elements are
independent and identically distributed with mean 0 and variance 1. The probability density function of a
Logistic distribution is:

f(x) =
1

4x
sech2(−x− µ

2s
) −∞ < x < ∞ (15)

where, µ is the mean and s is the scale parameter [17]. Let ϕ be the Cauchy random matrix and elements are
random variable with mean 0 and variance 1. The probability distribution of a Cauchy distribution is,

f(x) =
1

π

[
s

(x− l)2 + s2

]
(16)

Where, l is location parameter and s is scale parameter [17].

Figure 3: Sample Medical Images

4 Experimental Results and Discussion

In this paper, the medical images namely Shoulder MRI, Chest radiograph [23] and Brain MRI [24] as shown
in Fig. 3 are considered for experimentation, where the last two types are of covid-19 patients. The details
of the image data used in the experimentation are as follows: magnetic resonance image (MRI) of shoulder
rotator cut tear generated in Melbourne radiology clinic; brain MRI of 61 year old male COVID-19 patient
at New York university Langone medical centre; chest CT image of 59 year old female COVID-19 patient at
University of Hong Kong-Shenzhen Hospital, Hong Kong West. To facilitate the computation these images are
uniformly resized to 256× 256 pixels of resolution 150 dpi. The software implementation of the methodology
is carried out with MATLAB 2019a using an Intel Core i5 64−bit processor with 8.00 GB RAM, 2.60 GHz
clock speed on the Windows 10 operating system. The measurement matrices such as Gaussian random matrix,
Bernoulli random matrix, Laplace random matrix, Logistic random matrix and Cauchy random matrix are
applied and reconstructed by the predictive coding techniques such as scalar quantization (SQ), differential
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pulse code modulation (DPCM) and Spatially directional predictive coding (SDPC). The metrics Mean Square
Error (MSE) and PSNR are used to compare the compressive sensing results.

The formula for finding MSE and PSNR is given below:

MSE =
1

N2

n−1∑
i,j=0

||x(i, j)− y(i, j)||2 (17)

where, x(i, j) and y(i, j) are original and reconstructed images.

PSNR = 10 log
(2n − 1)2

MSE
(18)

where, n is the number of bits used to represent the pixels.

Sparcity =
no. of elements near to zero
Total number of elements

× 100 (19)

It is to be noted that for better image reconstruction the minimum PSNR to be obtained is 30 dB.

Table 1: Performance Evaluation of Brain MRI

Measurement SQ DPCM-Plus-SQ SDPC-Plus-SQ
Matrix Distribution

PSNR Time Sparcity PSNR Time Sparcity PSNR Time Sparcity
(dB) (sec) (%) (dB) (sec) (%) (dB) (sec) (%)

Gaussian
Random 24.08 8.58 66.36 34.55 2.43 57.35 33.87 1.67 54.67
Matrix
Bernoulli
Random 18.38 8.61 99.06 28.56 1.24 77.73 28.02 1.38 54.88
Matrix
Laplace
Random 23.27 8.93 76.58 34.38 1.79 56.60 34.83 2.01 49.13
Matrix
Logistic
Random 23.75 10.93 72.05 33.46 1.82 51.66 34.39 1.72 49.71
Matrix
Cauchy
Random 21.47 13.29 60.01 34.46 2.07 55.85 34.05 2.12 57.62
Matrix

In Table 1, the compressive sensing results for brain MRI dataset with reference to different measurement
matrices applied in the predictive coding approaches are presented. For SQ method, the Gaussian random
matrix has yielded maximum PSNR value (24.08 dB) and minimum computation time (8.58 sec.). For the
same, Bernoulli matrix has shown least performance in terms of PSNR and sparsity (99.06%), whereas Cauchy
random matrix requires more computation time. For DPCM-Plus-SQ method, maximum PSNR value (34.55
dB) is attained by Gaussian random matrix, least computation time (2.43 sec.) and sparsity (77.73%). For
SDPC-Plus-SQ method, better PSNR value (34.83 dB) and sparsity (49.13%) is attained for Laplace random
matrix and less computation time for Bernoulli random matrix. The least performance is for Bernoulli in terms
of PSNR and Cauchy random matrix in terms of computation time and sparsity. On the whole, Laplace random
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Table 2: Performance Evaluation of Chest-CT

Measurement SQ DPCM-Plus-SQ SDPC-Plus-SQ
Matrix Distribution

PSNR Time Sparcity PSNR Time Sparcity PSNR Time Sparcity
(dB) (sec) (%) (dB) (sec) (%) (dB) (sec) (%)

Gaussian
Random 20.24 7.08 36.30 28.52 1.80 50.07 28.11 1.95 50.03
Matrix
Bernoulli
Random 17.76 3.75 97.89 25.39 1.28 66.46 25.36 1.19 49.73
Matrix
Laplace
Random 20.20 7.30 68.22 28.72 1.65 54.27 28.79 1.57 49.00
Matrix
Logistic
Random 20.28 6.45 50.54 28.47 1.26 53.14 28.92 1.31 43.77
Matrix
Cauchy
Random 19.95 8.82 60.62 28.17 1.83 46.33 28.54 1.86 46.45
Matrix

matrix is able to achieve performance closer to the maximum one in terms of both metrics. Thus, SDPC-Plus-
SQ method has attained better PSNR value, sparsity and computation time than other two predictive coding
methods. It is evident that, DPCM-Plus-SQ is the second in performance and better than SQ method.

For the predictive coding approaches, the compressive sensing results attained based on different measure-
ment matrices for chest CT dataset is presented in Table 2. For SQ method, the Gaussian random matrix has
yielded maximum PSNR value (20.28 dB) and minimum computation time (7.08 sec.).For the same, Bernoulli
random matrix has shown least performance in terms of PSNR and sparsity (97.89%), Logistic random matri-
ces needs more computation time. However, Bernoulli and Logistic matrices show least performance in terms
of computation time, PSNR value and sparsity, respectively. For DPCM-Plus-SQ method, maximum PSNR
value (28.72 dB), computation time (1.28 sec.) and sparsity (54.27%) are attained by Laplace random ma-
trix. Bernoulli random matrix has shown least performance in terms of PSNR and sparsity (97.89%), Cauchy
random matrix needs more computation time. For SDPC-Plus-SQ method, maximum PSNR value (28.92) is
attained for Logistic random matrix with less computation time (1.31sec.) and sparsity (43.77%). The least
performance is for Gaussian and Bernoulli random matrices in terms of PSNR value and computation time,
respectively. On the whole, Logistic random matrix is able to achieve performance closer to the maximum
one in terms of both metrics. Comparatively, SDPC-Plus-SQ method has attained maximum PSNR value,
least computation time and sparsity, thus better than other two predictive coding methods. It is evident that,
DPCM-Plus-SQ is the second in performance and better than SQ method.

The compressive sensing results obtained for predictive approaches using different measurement matrices
experimenting with shoulder MRI dataset are given in Table 3. For SQ method, the Bernoulli random matrix
has yielded maximum PSNR value (26.74 dB), minimum computation time (5.66 sec) and sparsity (99.66%).
whereas Cauchy random matrix requires more computation time. For DPCM-Plus-SQ method, maximum
PSNR value (40.74 dB) least computation time (4.59 sec.) and sparsity (65.79%) is attained by Gaussian ran-
dom matrix. However, Gaussian and Bernoulli matrices show least performance in terms of computation time
and PSNR value, respectively. For SDPC-Plus-SQ method, maximum PSNR value (40.75 dB), least computa-
tion time (5.45sec.) and sparsity (54.93%) are attained for Laplace random matrix and Bernoulli random matrix
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Figure 4: Reconsructed images using measurement matrices (a) Original image (b) Least performance of re-
constructed images (c) Best performance of reconstructed images

needs less computation time. The least performance is for Bernoulli and Cauchy random matrices in terms of
PSNR value and computation time, respectively. On the whole, Laplace random matrix is able to achieve
performance closer to the maximum one in terms of both metrics. Comparatively, SDPC-Plus-SQ method has
attained maximum PSNR value least computation time and sparsity, thus better than other two predictive coding
methods. It is evident that, DPCM-Plus-SQ is the second in performance and better than SQ method.

In Fig.4, the reconstructed images for the sample brain MRI, chest CT and shoulder MRI images with
reference to different measurement matrices applied in the predictive coding approaches are presented. For
brain MRI images, the SQ method using Bernoulli random matrix has suffered with maximum level of noise
and low intensity contrast indicated by 99% of sparsity. On the other hand, the SDPC method using Laplace
random matrix has yielded an enhanced image with 49% of sparsity. For chest CT images, the SDPC method
using Logistic random matrix works well with 43% of sparsity and worst by Bernoulli random matrix with
97% of sparsity. For shoulder MRI images, the Laplace random matrix has yielded better enhanced image
with 57% of sparsity. For the same, Cauchy random matrix output shows low intensity contrast image with
65%of sparsity. On the whole, Laplace random matrix is able to reconstruct the image well, which is indicted
with sparsity 43%. From the results it is understood that the maximum level sparsity relates to highly noisy
image and the sparsity level attained below 60% for SDPC method is a significant one. Overall the SDPC-
Plus-SQ method using Laplace random matrix has attained better reconstructed image with minimum sparsity,
thus better than other two predictive coding methods. It is evident that, DPCM-Plus-SQ is the second in
performance of reconstructed images and better than SQ method. In this paragraph, the Laplace distribution
based sampling which is the underline for better performance by Laplace random matrix towards compressive
sensing is presented. The Laplace distribution, also called the double exponential and its probability function
is similar to the normal distribution. Its main characteristic is the way it models the probability of deviations
from a central value, also known as errors.
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Table 3: Performance Evaluation of Shoulder-MRI

Measurement SQ DPCM-Plus-SQ SDPC-Plus-SQ
Matrix Distribution

PSNR Time Sparcity PSNR Time Sparcity PSNR Time Sparcity
(dB) (sec) (%) (dB) (sec) (%) (dB) (sec) (%)

Gaussian
Random 21.76 5.66 79.68 40.74 4.59 65.79 40.62 4.79 49.83
Matrix
Bernoulli
Random 26.74 2.57 99.66 38.12 2.51 89.17 37.77 2,31 54.78
Matrix
Laplace
Random 21.88 4.97 84.53 40.49 4.06 60.43 40.75 5.45 57.93
Matrix
Logistic
Random 23.14 7.97 77.50 40.27 4.28 65.80 40.42 4.05 54.59
Matrix
Cauchy
Random 21.08 7.22 65.89 40.69 6.73 62.09 40.42 5.22 53.40
Matrix

The Laplace (or double exponential) distribution, like the normal, has a distinguished history in statistics.
In the literature, the Gaussian distribution achieves the improved output in compressive sensing for the same,
the Laplace distribution has similar to Gaussian distribution. Hence, the Laplace distribution performs well on
measurement matrix for reconstructed medical images. It has applications in image and speech recognition,
ocean engineering, hydrology, and finance. Indeed, there has been a surge of interest towards employing
Laplace distribution for generating random numbers among the research community.

5 Conclusion

In this paper, various measurement matrices with directional predictive coding have been experimented to-
wards compressive sensing of three types of medical images. The Laplace random matrix that satisfies the
RIP condition, gives the best image reconstruction results. The performance of the measurement matrices are
evaluated based on the experimentation using Shoulder MRI, Chest radiograph and Brain MRI images. The
SDPC method using Laplace matrix has shown the maximum performance in terms of PSNR, computation time
and sparsity. The improvement achieved towards compressive sensing of medical images in terms of sparsity,
PSNR and running time is an indication in serving the purpose of transmission, storage and reconstruction of
large medical images of high quality with lesser bandwidth, memory and quality reconstruction, respectively.
This in turn can help in diagnosing diseases too. Thus, this research outcome would be greatly beneficial to
medical authorities in the above perspective. In future work, the compressive sensing approach considered in
this work can be tested with the recently developed restricted structural random matrix. Also, it can be extended
to more types of medical images.
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