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Abstract
In visual fashion clothing analysis, many researchers are attracted with the success of deep learning

concepts. In this work, we introduce a multi-staged feature-attentive network to attain clothing category
classification and attribute prediction. The proposed network in this work brings out a landmark-free struc-
ture, whereas the existing landmark-driven structures take up a lot of manpower for landmark annotation
and also suffers from inter- and intra-individual variability. Our focus in this work is to intensify feature
extraction by incorporating low-level and high-level feature fusion within a fashion network. The feature
fusion helps the network to manifest spatial and rich semantic representation in each level of the network.
Besides, the proposed model utilises spatial and channel-wise attention to further enrich the multi-staged
features in producing contextual information. Additionally, we enclose a semi-supervised learning approach
to escalate the proposed architecture in fashion clothing analysis that utilises collaborative learning using
labelled and unlabelled data. The proposed approach is evaluated on large-scale DeepFashion-C dataset
while the unlabelled dataset for semi-supervised learning is obtained from six publicly available fashion
datasets. Experimental results show that the proposed multi-staged feature-attentive network entailing deep
convolutional neural network outperforms the state-of-the-art techniques considerably, in fashion clothing
analysis.

Keywords: Feature-attentive network, Fashion clothing analysis, Fashion attribute prediction, Semi-supervised
learning, DeepFashion, Landmark-free approach.

1 Introduction

The fast growth in fashion brands and the development in e-commerce giants have led the fashion industry to
urge spotting more valuable customers via collecting and analysing large amount of digitalised fashion related
data. Artificial intelligence begins to flourish the fashion domain with wide range of applications and innova-
tions through different scenarios such as detection, synthesis, analysis, and recommendation. However, fashion
analysis is a challenging task owing to the fact, it has great changes in trends, style and design compared to
other general objects. Therefore, numerous researches have been carried out in clothing modelling, recognition,
parsing, and retrieval addressing degrees of clothing related challenges [1, 2, 3, 4] in fashion analysis. All these
works, relatively accommodate detection of clothes area using bounding box prediction, analysing important
landmarks which distinguish various clothing categories, and predicting its attributes. The generic tasks carried
out in fashion clothing detection and classification are depicted in Figure 1.
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Figure 1: Outline of the generic tasks carried out in fashion clothing detection and classification.

As seen, earlier fashion models relied primarily on handcrafted functions and search for powerful clothing
displays such as graphic models, context information, general object suggestions, human parts, bounding-
boxes and semantic masks. In these days, many performances in fashion clothing analysis tasks have been
repeatedly revealed that deep neural networks can achieve better performance with learning problems using a
large-scale labelled data [3, 4, 5, 6, 7, 8, 9]. Inspired by visual attention mechanisms, many researchers have
tried to model a soft attentive network to prompt the performance of computer vision tasks [10, 11, 12, 13].
Works that have been reported in the fashion analysis using attention-based deep learning architectures shows
that the overall performance is enhanced [1, 3, 5, 6, 7, 14]. In a way, most of the researches focus on the
attention obtained from clothing landmark detection to improve category and attribute prediction [3, 4, 5, 7,
14] and various landmark estimation works are reported in supporting the mission in clothing classification
[1, 6, 9, 15]. These works appraise the importance of clothing landmarks which are fundamental regional
points to express the structure of an clothing item. Though the performance shows improvement, the studies on
landmarks are troublesome and time consuming. It also suffers from unique differences in clothing items so that
combining or grouping landmarks is a crucial task. On that account, the effective feature engineering which is
able to learn discriminative feature representation becomes eminent part in clothing category classification and
attribute prediction. In addition, we notice that as in feature pyramid networks (FPN) [16], the fusion of low-
level and high-level visual features impel the extraction to different contextual features throughout the network
to capitalise attention in helping effective feature representation. This approach is worked on the benefit in
identifying salient cloth regions and amplifying their influence, while terminating the irrelevant information in
other regions.

Additionally, we address major tasks in fashion analysis using multitask learning technique that extracts
feature representation of clothing categories as well as its attributes in semi-supervised manner. Most of the
time, the form of an architecture is strongly controlled by labelled data. However, fashion data for clothing
analysis are in large-scale, yet, the success on annotated datasets are expensive due to a lot of human effort,
pain and/or financial cost in creating such large datasets. Therefore, semi-supervised learning (SSL) has proven
to be a powerful paradigm to leverage unlabelled data to mitigate the reliance on large labelled datasets by
combining supervised and unsupervised learning [17, 18, 19, 20, 21]. We structure a network which can make
use of labelled and unlabelled samples together so that the additional training can be avoided. Inspired from
various architectures, minimising the entropy of the prediction function is used which takes the performance to
a step forward since the classification cost is not specified for unlabelled samples. As a result, our SSL model
shows significant improvement to the clothing analysis architectures.

Hence, the focus of this work is to construct an integrated model which is capable of identifying clothing
categories along with its distinctive attributes. Our model comes to grip with the feature attention mechanism
for multiscale collaboration and contextual supervision among features from low to high levels of network.
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To summarise, our main contribution is three-fold:

- Formalised fashion analysis into a multitask deep neural network for clothing category classification and
its attribute prediction,

- Established a multi-staged feature-attentive network through multiscale contextual feature supervision
and semantic feature engineering using spatial and channel attention, and

- Experimented a semi-supervised learning approach by integrating collaborative learning architecture for
clothing category classification and its attribute prediction using large-scale of unlabelled fashion data.

The rest of the manuscript is structured as follows: Section 2 discusses the previous works carried out in the
field of fashion clothing analysis. Section 3 describes the proposed methodology in this work. Section 4 briefly
outlines the experimental setup, testing results, findings, and ablation study. Finally, Section 5 concludes this
work with future extension.

2 Related Work

In this section, recent works that have been reported in the literature of fashion clothing analysis are summarised
based on the tasks: Landmark detection, landmark-driven and landmark-free classification.

2.1 Fashion Landmark Detection

The main task of fashion landmark detection is to recognise and locate the functional points of clothing images
such as sleeve-end, collar points, waistline, and hemline. It is the key force to improve other fashion applications
such as fashion classification, retrieval, design and recommendation. Fashion landmark detection has been used
through various techniques such as regression [4, 22], pose estimation-based methods [23], constraint-based
methods [24, 25] and as attentive knowledge for category classification [5, 7, 14, 26, 27]. However, due to
various deformations and changes in fashion images, fashion landmark detection is still difficult to apply in
actual industrial domains.

2.2 Fashion Clothing Classification

2.2.1 Landmark-driven Approaches

Liu and Lu [5] proposed an attentive fashion network based on VGG-16 by giving knowledge through more ac-
curate landmark localisation by producing high-resolution landmark heatmaps using transposed convolutions.
With the help of predicted landmarks, a landmark-driven architecture is proposed to improve the accuracy of
fashion category classification and attribute prediction leading to a fully differentiable network that can be
trained end-to-end. Wang et al. [7] proposed a fashion network based on VGG-16 architecture that employs
features from the third layer of fourth convolutional block for landmark-driven feature representation. Au-
thors introduced a bidirectional convolutional recurrent neural network (BCRNN) architecture by processing
message passing over grammar arrangements which is flexible to generate more sensible landmark locations.
Authors focused on capturing the dependency grammar such as kinematics-like relation and symmetry gram-
mar integrating the bilateral symmetry of clothes. Li et al. [26] proposed a two-stream multitask network
based on ImageNet pretrained ResNet50 by designing two knowledge-sharing strategies which enables infor-
mation transfer between tasks and improves the overall performance for clothes landmark detection, category
classification, and attribute prediction. Authors also exhibited two awareness methods: Boundary awareness
and structural awareness to semantically share representation and aggregate features among different tasks.
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Further, Shajini and Ramanan [14] proposed a multitask model based on VGG-16 which focuses more to-
wards the feature attention through predicted landmark points in order to enhance the category classification and
attribute prediction. The extracted features from parallel dilated convolutions are then concatenated with ded-
icated global features and acquire the benefit of transposed convolutions to produce high resolution heatmaps
for better localisation of landmarks. The attentive map from landmark localisation branch is then concatenated
with the global features of classification branch for clothing classification. Besides, Zhang et al. [27] proposed
a two-stream fashion network based on VGG-16 incorporating the importance of the landmarks along with
impelling effect of the texture and shape to enhance the performance of category classification accompany-
ing attribute prediction based on clothing images. The authors proposed a network combining texture-biased
stream using the pretrained model of ImageNet and shape-biased stream using attention through localised cloth-
ing landmarks along with its visibility features.

2.2.2 Landmark-free Approaches

Lee et al. [8] proposed a landmark-free clothes classification via exploiting feature selective network based
on VGG-16. A multitask learning network is divided into attribute prediction and category classification. The
attribute prediction was enhanced with the help of class activation map derived by [28] and higher activated
feature selection. The average pooling is applied to the activation map and then higher n values are selected to
manifest the activated values. Besides, Ferreira et al. [3] introduced the relation between attribute localisation
and visual appearance by implanting a semantic attention module guided by body pose estimation. The pose
estimation is done using the off-the-shelf pose detector OpenPose [29]. Authors designed a visual semantic
attention model which uses VGG-16 as the basic network to produce heatmap accompanying combined key
joints obtained from OpenPose.

Differently, Corbiere et al. [30] proposed a ResNet-50 based model for feature extraction that is directed
with a weakly supervised text embedding for fashion images collected from e-commerce websites. For text
embedding, labels are predicted from bag-of-words description consisting of probability of each word among
the vocabulary. Another work from Cho et al. [31] proposed a fashion category classification model that
explores hierarchical arrangements of clothing categories. The model consists of two components: Neural
network-based image encoder and a hierarchical classifier over a set of annotated categories. The proposed
model is implemented on hierarchical multilabel classification networks-feedforward [32].

2.3 Attention

Attention mechanism plays a huge role in both natural language processing and computer vision tasks. Many
machine learning approaches absorbed attention-based architectures to perform various tasks such as image
recognition [13, 33, 34], visual question answering [35], image captioning [36], and image editing [37].
Squeeze-and-Excitation network [10] is proposed based on the channel attention to weight the relation be-
tween the channel and prime information. Non-local neural network [11] computes the response at a position
on the feature map as a weighted sum of the features at all positions which assist to a receptive field same as
the feature map size. The work in [38] proposed a simple transformer network by assigning both recurrence
and convolutions with stacked self-attentions.

In fashion clothing analysis, the importance of the landmark-driven attention in classification has shown
an effective enhancement in [6, 7, 14, 15]. Spatial-aware non-local attention (SANL) [6] mechanism shows
better performance in landmark detection by expressing the effectiveness of the attention. A landmark-aware
attention along with category-driven attention is also reported by Wang et al. [7] based on VGG-16 network
and top-down approach in category and attribute prediction. Besides, Liu and Lu [5] proposed a landmark-
driven network which utilises upsampling technique through basic encoder-decoder architecture and feeding
landmark attention map into classification of clothes.
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Figure 2: Illustration of the proposed framework. Conv1-5 denote different levels of base network. Lateral
connections consist of two attentions: Spatial attention and channel attention.

3 Methodology

3.1 Multi-staged feature attention

Most importantly, huge semantic gap between the low-level features and the high-level semantic features hustle
on feature representation in convolutional neural networks. From this inspiration, we construct a multi-staged
feature-attentive network based on VGG-16 pretrained model. It is useful to adopt recalibrated multiscale
features from multilevel of architecture. This can not only help the network to locate more characteristic and
informative features but also the high-level features are able to guide in rectifying low-level features. In a
feature pyramid network (FPN) [16], a top-down structure is connected with the bottom-up backbone by lateral
connections so that the high-level semantic features can be passed to the low-level feature maps. Furthermore,
multiscale predictions are made from the top-down architecture at all scales. Accordingly, we build a top-down
feature generation like FPN. However, features are transformed and processed by spatial and channel attentions
respectively, before passing them to the next level. Generally, the top-level features of deep neural networks
contain rich semantic information while having small resolution with larger receptive field that is useful to
recognize patterns in large scale. The features of initial few layers manifest rich spatial information which
represent the simple understanding of clothing items by neural networks which have large in resolution and
smaller receptive field. Therefore, the larger scale feature is useful to find small patterns. However, not all
features are useful to processed further. It is necessary that the informative features provided must be selected
which can be executed well focusing on both spatial and channel-wise effective feature rendition.

Attention mechanisms are accompanied by various structures of spatial, semantic and/or channel information
and are widely used in computer vision tasks such as medical image segmentation [39], image captioning [36],
and regression networks [40]. Generally, important features for precise identification are obtained based on the
spatial information so that the spatial attentive features are extracted on salient regions. Similarly, each filter in
convolution operation works on a pattern and each channel in the feature map is activated by the response of
the corresponding filter. As a result, channel attentive features are constructed on important semantic attributes.
Hence, combining both spatial and channel attentions into a network expects to be effective in many cases
whereas tiny regions in images are concentrated as areas of interest in fashion classification. In accordance
with this ability, instead of direct feed-forward of feature maps in lateral connections of multi-staged feature-
attentive network, we concatenated spatial and channel attentions. The proposed architecture is illustrated in
Figure 2.



88 M. Shajini and A. Ramanan / Electronic Letters on Computer Vision and Image Analysis 20(2):83-100, 2021

H ×W × C

GAP

GMP

+

1× 1× C
2

FC
+

ReLU

1× 1× C

FC
+

Sigmoid

×

Conv:1× 1
H ×W × C

H ×W × 1

×
Sigmoid

FCA

FSA

Channel Attention (CA)

Spatial Attention (SA)

Figure 3: Structure of the spatial and channel attentions used in the lateral connections of multi-staged feature
attention. Top block denotes the illustration of channel-wise attention (CA) which is initially achieved by
adding Global Average Pooling (GAP) and Global Max Pooling (GMP) to generate channel attentive features
(FCA) where bottom block stipulates spatial attention (SA) through a 1 × 1 convolution to generate spatial
attentive features (FSA).

Since different levels of multiscale feature map is passed through network, we fixed the dimension of feature
map at each level and all extra convolutional layers as same which can meet the demand of a fixed number
of feature map channels, and also reduces the memory consumption while keeping up better performance.
Therefore, we first apply a convolution to all stages expect the first stage to set the dimension of feature maps
as 512 followed by a spatial attention block to transform the feature representation. Then a channel attention
block is incorporated in the gating point, which intakes the concatenated feature maps from different stages
of network. This creates a fusion of multilevel of features as an added advantage in representing features
effectively. The refined feature maps obtained from all stages are element-wise multiplied. Finally, the multi-
staged attentive feature map is added to the features derived from Conv4 block of base network to be followed
with the rest of the layers.

3.1.1 Spatial attention

The spatial attention makes the network earn benefits from the features on the most significant areas of fashion
clothing items. To create spatial attention map, channel squeeze is implemented with a 1×1 convolution kernel.
Then sigmoid function is applied to the convolved features to get a normalised values for feature map. Output
of this operation represents the combination of all channel information in corresponding spatial locations. The
structure is depicted in Figure 3. The created attention map is then multiplied element-wise with the output
feature map from the corresponding level to get the spatial-wise weighted feature maps (FSA). According
to the observation, only the cloth area in the image significantly contributes the most on predicting attribute
patterns, encoding this knowledge can help the model focus on the target region and learn a better spatial
representation.



M. Shajini and A. Ramanan / Electronic Letters on Computer Vision and Image Analysis 20(2):83-100, 2021 89

3.1.2 Channel attention

In this phase, first we concatenate feature map FSA obtained from spatial attention and upsampled feature map
from corresponding next level of network. Then the dimension of output feature map is reduced to half the
size. To produce channel attention map, initially, we squeeze spatial features by employing global average
pooling (GAP) and global max pooling (GMP) simultaneously, then both the squeezed maps values are added
together as shown in Figure 3. Though, global average pooling is wisely used to create channel attention
maps, we further go into focusing important points to effectively support attribute prediction by selecting the
maximum response point in feature maps. Therefore, we use GAP and GMP together to extract spatial-wise
contextual information. After that, two fully connected (FC) layers followed with sigmoid activation are utilised
to generate channel attention map. The dimensionality reduction ratio is set to 2 in the first FC layer and then
it is again resized to original input size for the next FC layer. At this point, residual connection is appended
to generate channel-wise weighted feature maps (FCA) from output features obtained from spatial attention
instead of concatenated feature input by element-wise multiplying the channel attention map.

4 Experiments

4.1 Dataset

DeepFashion-C dataset∗. We evaluate our proposed framework for category classification and attribute predic-
tion on this eminent dataset of fashion clothes released in 2016. It contains 289,222 annotated fashion clothing
items. The dataset consists of evaluation status for every image as ‘train’, ‘val’, and ‘test’ and is also pro-
vided with bounding box of upper left and lower right point coordinates. The dataset statistics is summarised
in Table 1. Example images from the dataset for different categories and distinct attribute types are shown in
Figure 4.

Table 1: DeepFashion-C dataset statistics

# images 289,222
# categories 50 including upper, lower, and full body clothing items
# attribute types 5 (texture, fabric, shape, part, and style) including 1000 distinct attributes
# landmarks 8 (right/left collar, right/left hem, right/left waistline, and right/left sleeve)
Resolution The long side of images are resized to 300
Training / validation / testing 209222 / 40000 / 40000 images

Figure 4: Example images from the DeepFashion-C dataset for different categories and distinct attribute types.

∗http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html

http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
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4.2 Network Architecture

Our method is built upon VGG-16 pretrained architecture. Learned feature maps through feature-attentive block
incorporated until Conv4 block is then fed into the Conv5 block of VGG-16. We subdivide the fully connected
layers as two branches incorporating multitask network with attribute prediction and category classification.
Each branch consists of one FC layer with the size of 1 × 1 × 1024. Further, we use standard cross-entropy
loss (Lossc) and weighted cross-entropy loss (Lossa) to train category classification and attribute estimation,
respectively. To facilitate multitask learning throughout the model, we utilise a weighted loss combination to
calculate the total loss which is used to optimise the model weights. The combined loss is as follows,

L = wc × Lossc + wa × Lossa (1)

where wc and wa are the weights for the losses computed from category and attribute branches, respectively.
The weighted cross-entropy loss to predict attributes incorporates the weighting factors by the ratio of the
numbers of positive and negative samples in the training set as instructed in [4].

4.3 Quantitative Results

4.3.1 Experimental Setup

Our model is implemented using PyTorch and optimised using Adam optimiser [41] on Tesla P100-16GB
system. In each iteration we use mini-batch of size 16. Initially, the learning rate is set to 0.0001 which is
decreased by a factor of ten for every two epochs. We split the training and testing images as presented in the
DeepFashion-C dataset where the splits remain as [training/testing/validation: 209,222/40,000/40,000 images].
We crop all the images using the annotated bounding box labels and then resize them into 224×224. The
performance of our proposed model in training process is depicted as loss and accuracy curves in Figure 5.

4.3.2 Performance Evaluation

For category classification and attribute prediction, we applied top-k classification accuracy and top-k recall
rate, respectively. We compared the performance with ten recently reported works [4, 5, 7, 8, 14, 27, 30, 31, 42,
43] in fashion analysis. As shown in the Table 2, our model slightly outperforms state-of-the-art approaches
using supervised learning in fashion clothing classification. Figure 7 shows some of the example images and
corresponding top-5 list of predicted attributes and category. The results reported in the literature make use of
top-3 and top-5 accuracies. Therefore, our test results are reported using those measures in all tables. Our model
shows 92.11 and 96.67 for top-k accuracy, and for the attribute prediction, overall top-k recall achieves 54.92
and 63.18 where k = 3 and 5, respectively. Compared to other works reported in fashion analysis, our model

(a) (b)
Figure 5: (a) Category classification accuracies in top-3 and top-5 for different number of epochs. (b) Training
losses for the number of epochs.
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Table 2: Performance comparison of category and attributes classification methods on test set using top-k
accuracies

Methods Category Attribute
top-3 top-5 top-3 top-5

Chen et al. (2012) [44] 43.73 66.26 27.46 35.37
Huang et al. (2015) [42] 59.48 79.58 42.35 51.95
Liu et al. (2016) [4] 82.58 90.17 45.52 54.61
Corbiere et al. (2017) [30] 86.30 92.80 23.10 30.40
Wang et al. (2018) [7] 90.99 95.78 51.53 60.95
Liu and Lu et al. (2018) [5] 91.16 96.12 54.69 63.74
Lee et al. (2019) [8] 91.37 95.26 47.70 57.28
Cho et al. (2019) [31] 91.24 95.68 - -
Zhang et al. (2020) [27] 91.99 96.44 50.58 60.43
Shajini et al. (2020) [14] 91.02 96.20 51.89 62.04
Ours 92.11 96.67 54.92 63.18

Table 3: Quantitative results for attribute prediction on DeepFashion-C dataset using top-k recall

Methods Texture Fabric Shape Part Style All
top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5 top-3 top-5

Chen et al. [44] 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37
Huang et al. [42] 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.14 66.11 71.36 42.35 51.95
Liu et al. [4] 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61
Corbiere et al. [30] 53.60 63.20 39.10 48.80 50.10 59.50 38.80 48.90 30.50 38.30 23.10 30.40
Wang et al. [7] 50.31 65.48 40.31 48.23 53.32 61.05 40.65 56.32 68.70 74.25 51.53 60.95
Liu and Lu[5] 56.17 65.83 43.20 53.52 58.28 67.80 46.97 57.42 68.82 74.13 54.69 63.74
Lee et al. [8] 56.95 66.24 44.03 54.21 56.87 66.25 44.89 55.15 33.98 42.21 47.70 57.28
Shajini et al. [14] 56.88 65.16 36.49 44.41 51.88 60.71 47.25 59.97 54.21 67.23 51.89 62.04
Zhang et al. [27] 58.52 68.19 46.44 57.02 61.86 70.81 49.82 60.36 34.40 43.44 50.58 60.43
Ours 60.02 68.84 43.16 54.69 61.97 71.17 49.95 60.72 68.11 73.20 54.92 63.18

shows top-3 and top-5 accuracy increased by 1% and 0.5%, respectively, in terms of category classification.
Similarly, the performance for clothing attribute prediction reveal that our model increases the top-3 recall rate
by nearly 3%. The detailed results for each attribute type is summarised in Table 3. Further, the top-5 prediction
recall rate for each attribute type with two highest representative attribute values is plotted in Figure 6. Our
proposed model shows 36ms of the inference time. We also investigated the impact of semi-supervised learning
approach using a knowledge-sharing architecture and the experimental details are discussed in the ablation
study.

4.4 Ablation Study

4.4.1 Semi-supervised learning approach

We experiment the major tasks in fashion analysis that extracts feature representation of clothing categories as
well as its attributes in semi-supervised manner. The main goal is to structure a framework which can utilise
labelled and unlabelled samples together so that we can avoid additional training. The main concern in choos-
ing SSL approach is inspired in various architectures by minimising the entropy of the prediction function that
takes the performance to the next level since the classification cost is not defined for unlabelled samples.

Collection of unlabeled dataset. For examining the semi-supervised approach, six publicly available datasets
are merged together to create large-scale unlabelled dataset including 400K images. We made use of all
clothing images from in-shop clothes retrieval and consumer-to-shop datasets which are subsets of large-scale
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Figure 6: Per-attribute prediction performance: Two representative attribute values for each attribute type in
order of texture, fabric, shape, part, and style.

Figure 7: The results of proposed model which shows the top-5 list of all attributes together with predicted
category. If the actual ground truth attribute is listed in top-5, it is marked in green and others in red.

DeepFashion dataset [4] due to its same domain characteristics. We also utilised manually selected samples
from the iMaterialist fashion attribute dataset [45], Fashion10000 [46], Fashion data [47], and clothing attribute
dataset [44]. The brief statistics of benchmark datasets for fashion analysis is given in Table 4. Besides, Fig-
ure 9 shows examples of the clothing images included in the DeepFashion-C dataset and combined unlabelled
dataset. According to the decorum of unlabelled dataset, all images are resized to 224×224 relative to their
largest center.

We examine a collaborative learning architecture using convolutional neural network to experiment the semi-
supervised learning approach with weighted loss minimisation among shared network to learn discriminative
clothing representation in utilising unlabelled data. As a result, our SSL model yields significant improvement
to the clothing analysis architectures. The semi-supervised framework consists of networks called Teacher-
Student (T-S) pair. The way this model selects the pseudo label is defined by the maximum probability score,
so that the good teacher model plays a major part in T-S pair model in performance. The proposed multi-
staged feature-attentive network is employed as the teacher model. Furthermore, the student model represents
straightforward network by which the complexity of the training process is reduced and the unlabelled samples
are able to extract the insight of clothing items in an unambiguous way. The student model is constructed by
integrating additional spatial-channel attention at the end of residual blocks of Conv3 of pretrained ResNet-18
as shown in Figure 8. In this phase, the student model grasps the structure of spatial and channel attention
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Table 4: Summary of datasets used in fashion analysis

Datasets Authors # images # categories
Clothing attribute Chen et al. (2012) [44] 1,856 7
Fashion data Lukas et al. (2013) [47] 590,234 -
Fashion10000 Babak et al. (2014) [46] 32,398 470
Fashion Landmark Detection Liu et al. (2016) [22] 123,016 -
DeepFashion-C Liu et al. (2016) [4] 289,222 50
Fashion200K Xintong et al. (2017) [48] 209,544 5
Unconstrained landmark Yan et al. (2017) [49] 30,000 -
CatalogFashion-10x Heilbron et al. (2019) [50] 1,000,000 43
iMaterialist fashion attribute Sheng et al. (2019) [45] 1,000,000 105
DeepFashion2 Ge et al. (2019) [51] 491,000 13

similar to teacher model but the channel attention only uses the global average pooling to generate attention
map. The student model is modified further by adding two output layers for the multitask learning of category
classification and attribute prediction leading with a FC layer size of 1×1×1024. Equal proportion of labelled
and unlabelled samples are taken into the teacher model and pseudo labels are picked by the teacher model
for unlabelled samples which gives maximum probability among category scores. It is commendable that the
ratio of labelled and unlabelled samples taken for training to be equal so that it creates the effective balance of
semi-supervised learning in multitask. Further, instead of selecting top k labels introduced in [20], we select the
best one due to the concrete performance of selected teacher model. Simultaneously, teacher model calculates
the losses Lossl and Lossul for labelled and unlabelled samples, respectively. Then the unlabelled samples
with the predicted pseudo labels are fed into the student model for training and is tuned to optimise the student
model weights.

We experimented the weighted minimisation by utilising task-dependant uncertainty of each paired models
which helps to find the optimum balance between losses. It is inspired from the work reported in [52] where
the classification likelihood extends to a scaled version of the model output for balancing losses. Let the loss
for cross-entropy for y be,

L(w) = −log(Softmax(y, fw(x), σ)) (2)

and optimise with respect to w as well as the noise parameter σ. In the main transition of loss function, an
explicit assumption is made as,

1

σ2

∑
exp(

1

σ2
fw(x)) ≈ (

∑
exp(fw(x))

1
σ2 (3)

The weighting coefficients are turned in to trainable parameters using this uncertainty measure where they are
also optimised during training time. This tends to the definition of combined loss as follows,

L =
1

σ21
× (Lossl + Lossul) +

1

σ22
× Lossst + log σ1 + log σ2 (4)

where, σ1 and σ2 are the noise parameters of supervised and unsupervised losses, respectively. We used the
cross-entropy and weighted cross-entropy losses for clothing category classification and attribute prediction,
respectively, in which the Lossl and Lossst are together used to minimise the error in joint learning. In
addition, we define the losses Losscul and Lossaul for unlabelled data samples as an entropy of the prediction
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Figure 8: The illustration of the proposed semi-supervised architecture. The predicted labels with high score
from teacher model (block in left) will be assigned for the unlabelled samples to further train the student model
(block in right).

(a) (b)

Figure 9: Starting from left to right, the sub parts shows: (a) example labelled images, and (b) example images
from the unlabelled dataset for some different categories.

functions h(x)c and h(x)a which quantifies the level of uncertainty of the network on unlabelled samples,
respectively. The notation c denotes category classification where a denotes attribute prediction.

Losscul = − 1

M

M∑
k=1

h(x)ck × log(h(x)ck + 1e−5) (5)

Lossaul = − 1

M
[

M∑
n=1

wp × h(x)an × log(h(x)an +1e−5) + wn × (1− h(x)n)× log(1− h(x)n +1e−5)]

(6)

where M is the number of training samples along with the weights wp and wn for the ratio of positive and
negative samples in attribute prediction, respectively. For category classification and attribute prediction, we

Table 5: Experimental results for category and attributes classification using supervised/semi-supervised learn-
ing approach on test set. The results are top-k accuracies and top-k recall, respectively

Methods
Category Attribute

top-3 top-5 top-3 top-5
Supervised (ours) 92.11 96.67 54.92 63.18
Semi-supervised [53] 91.06 96.35 51.22 61.63
Semi-supervised (ours) 91.89 96.71 54.66 62.43
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applied top-k classification accuracy and top-k recall rate, respectively. We separately evaluated the perfor-
mance of the student model in fashion clothes category classification using supervised learning. The learning
rate is initially set to 0.0001 then reduced by factor of ten when validation loss plateau. It achieves 90.07%
and 93.95% for top-k accuracies where k=3 and 5, respectively for category classification. At the end of the
training process, the teacher and student models have uncertainty measures of 2.48 and 19.21 for the value of σ1
and σ2 which results in effective weighting of losses approximately 1:0.16 in collaborative learning. As shown
in Table 5, the proposed semi-supervised learning approach called T-S pair model with our proposed teacher
architecture achieves commendable results. Compared to supervised learning approach, the performance in-
creases by 0.04% of top-5 accuracy for category classification and for attribute prediction it shows the relative
performance. Besides, compared to [4, 5, 7, 8, 14, 27, 30, 31, 42, 43, 53], the T-S pair model outperforms
in top-5 accuracy for category classification and shows relative performance in top-3 and top-5 recall rate for
attribute prediction. For the experiments, we used Tesla P100-16GB system and the model shows 56ms of
inference time.

4.4.2 Evaluation on multi-staged feature extraction

In these experiments, we performed an extensive study on components of the proposed MHGAN. The proposed
framework mainly relies on baseline which is a pretrained VGG-16 model. We further studied the impact of the
combination of multilevel features and spatial-channel-wise information to effectively classify clothing items
and predict their attributes.

In order to improve the performance, an attention mechanism is indulged in between the Conv4 and Conv5
blocks of the baseline model. The spatial attentive features (FSA) are then fed into channel attention to extract
channel attentive features (FCA). The structure of both attentions increases the performance. The spatial
attention (SA) together with channel attention (CA) makes full use of the characteristics of CNN and can
produce compelling image features, thus the performance has been improved [14, 36, 40]. Generally, important
features for precise identification are obtained based on the spatial information so that the spatial attentive
features are constructed on salient regions. Therefore, combining both spatial and channel attentions into a
network is expected to be effective in many cases, whereas tiny regions in images are concentrated as regions
of interest in fashion classification.

The focus is then turned into a multilevel feature enhancement as the introduction of FPN and its effective
performance in computer vision tasks attracted the way of fashion analysis. In these experiments, we extend
the attention mechanism into a multi-staged feature extraction architecture accompanying experiments on the
use of spatial and channel-wise attentions. The SA block pays attention to the global area related to semantic
information of clothing items and supports the overall performance in classification. In accordance with the
ability of SA and CA blocks, instead of direct feed-forward of feature maps in lateral connections of multi-
staged feature-attentive network, we concatenated spatial and channel attentions for the study. Output of this
operation represents the combination of all channel information in corresponding spatial locations. In each
iteration we use mini-batch of size 16. Initially, the learning rate is set to 0.0001 which is decreased by a factor
of ten for every two epochs. The experimental results are summarised in Table 6. We evaluate the overall
in-depth performance of our framework structure in significant ways:

(i) Training the baseline model which is a pretrained VGG-16 network,

(ii) Training the baseline model with spatial and channel-wise attentions structured in parallel at a confined
level,

(iii) Training the model with spatial and channel-wise attentions structured in multilevel where channel atten-
tion takes input from GAP, and

(iv) Training the model with spatial and channel-wise attentions structured in multilevel where channel atten-
tion takes input from combined GAP and GMP.
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Table 6: Comparison of the ablation study on category and attribute prediction tested on DeepFashion-C dataset
using top-k accuracies and top-k recall, respectively

Methods
Category Attribute

top-3 top-5 top-3 top-5

Baseline (VGG-16) 82.64 89.08 35.96 54.07

Baseline + SA + CA (single-staged) 84.80 91.47 36.43 55.41

Baseline + SA + CA (multi-staged, GAP) 91.12 94.34 50.49 59.18

Baseline + SA + CA (multiple-staged, [GAP, GMP]) 92.11 96.67 54.92 63.18

5 Conclusion

In this paper, we presented a multi-staged feature-attentive model for learning robust fashion classification. The
effectiveness of the proposed architecture has been verified by experiments, indicating clothing classification
and prediction of its corresponding attributes that are more robust by learning feature representation through
combining low-level and high-level features of convolutional neural network. This approach recalibrates the
feature extraction by focusing on contextual information from different levels of network through more attention
on both spatial regions and channel values obtained using different filter operations. We also examined a
semi-supervised teacher-student pair learning approach to escalate the performance where the annotation of
fashion clothing images became more dreadful. Our experiments show qualitative performance in category
classification and attribute prediction that slightly outperforms many approaches reported in recent works.
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